A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A High Throughput Assay for Discovery of Bacterial β-Glucuronidase Inhibitors. | LitMetric

A High Throughput Assay for Discovery of Bacterial β-Glucuronidase Inhibitors.

Curr Chem Genomics

Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA.

Published: July 2011

CPT-11 is a widely-used anti-cancer drug that is converted in vivo to its active metabolite, SN-38. In the liver, enzymes detoxify SN-38 by coupling it to a glucuronidate moiety and this inactive compound (SN-38G) is excreted into the gastrointestinal tract. In the intestine, commensal bacteria convert the SN-38G back to the active and toxic SN-38 using bacterial β-glucuronidase enzyme (GUS). This intestinal SN-38 causes debilitating diarrhea that prevents dose-intensification and efficacy in a significant fraction of patients undergoing CPT-11 treatment for cancer. This CPT-11 metabolic pathway suggests that small molecule inhibitors of GUS may have utility as novel therapeutics for prevention of dose-limiting diarrhea resulting from CPT-11 therapy. To identify chemical inhibitors of GUS activity, we employed and validated a high throughput, fluorescence-based biochemical assay and used this assay to screen a compound library. Novel inhibitors of GUS were identified with IC(50) values ranging from 50 nM to 4.8 µM. These compounds may be useful as chemical probes for use in proof-of-concept experiments designed to determine the efficacy of GUS inhibitors in altering the intestinal metabolism of drugs. Our results demonstrate that this high throughput assay can be used to identify small molecule inhibitors of GUS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3106358PMC
http://dx.doi.org/10.2174/1875397301105010013DOI Listing

Publication Analysis

Top Keywords

inhibitors gus
16
high throughput
12
throughput assay
8
bacterial β-glucuronidase
8
small molecule
8
molecule inhibitors
8
inhibitors
6
gus
6
assay
4
assay discovery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!