KAP-1 poses a substantial barrier to DNA double-strand break (DSB) repair within heterochromatin that is alleviated by ATM-dependent KAP-1 phosphorylation (pKAP-1). Here we address the mechanistic consequences of pKAP-1 that promote heterochromatic DSB repair and chromatin relaxation. KAP-1 function involves autoSUMOylation and recruitment of nucleosome deacetylation, methylation and remodeling activities. Although heterochromatin acetylation or methylation changes were not detected, radiation-induced pKAP-1 dispersed the nucleosome remodeler CHD3 from DSBs and triggered concomitant chromatin relaxation; pKAP-1 loss reversed these effects. Depletion or inactivation of CHD3, or ablation of its interaction with KAP-1(SUMO1), bypassed pKAP-1's role in repair. Though KAP-1 SUMOylation was unaffected after irradiation, CHD3 dissociated from KAP-1(SUMO1) in a pKAP-1-dependent manner. We demonstrate that KAP-1(Ser824) phosphorylation generates a motif that directly perturbs interactions between CHD3's SUMO-interacting motif and SUMO1, dispersing CHD3 from heterochromatin DSBs and enabling repair.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nsmb.2077DOI Listing

Publication Analysis

Top Keywords

kap-1 phosphorylation
8
dna double-strand
8
double-strand break
8
dsb repair
8
chromatin relaxation
8
kap-1
5
chd3
5
phosphorylation regulates
4
regulates chd3
4
chd3 nucleosome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!