Background: Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants that have been defined as major environmental pollutants. While previous studies have found that PBDEs may enhance the levels of sex-steroid hormones, their effects on testosterone secretion from rat Leydig cells are unclear. This study investigated the effects and mechanisms of PBDE-710, a mixture of tetra- and penta-PBDEs, on testosterone biosynthesis in rat Leydig cells.

Methods: Leydig cells from adult male rats were challenged with different concentrations of PBDE-710 (0.5-15 ng/ml) to evaluate the effects on testosterone steroidogenesis. Concentrations of testosterone and of cAMP and pregnenolone in medium were measured by radioimmunoassay (RIA) and by enzyme-linked immunosorbent assay, respectively. Nuclear translocation of protein kinase A α (PKAα) was determined by immunofluorence assay and western blot assay, and the mRNA expression of steroidogenic acute regulatory protein (StAR) was analyzed by quantitative real-time polymerase chain reaction.

Results: In this in vitro study, PBDE-710 (5 or 15 ng/ml) increased basal testosterone secretion and cAMP production by 3- and 2-fold, respectively. The stimulatory effect was abolished by adenylyl cyclase inhibitor. Enzyme activity of CYP11A1, as determined by the pregnenolone concentration, was stimulated by PBDE-710 treatment. Furthermore, nuclear translocation of PKAα was increased by 20% and StAR gene expression was elevated by 4-fold after PBDE-710 treatment.

Conclusions: These results suggest that low concentrations of PBDE-710 could stimulate testosterone secretion by acting directly on Leydig cells to activate the cAMP pathway and increase expression of StAR.

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/der165DOI Listing

Publication Analysis

Top Keywords

leydig cells
16
rat leydig
12
testosterone secretion
12
polybrominated diphenyl
8
diphenyl ethers
8
effects testosterone
8
concentrations pbde-710
8
nuclear translocation
8
testosterone
6
pbde-710
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!