Microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) are bacterial surface proteins mediating adherence of the microbes to components of the extracellular matrix of the host. On Staphylococci, the MSCRAMMs often have multiple ligands. Consequently, we hypothesized that the Staphylococcus aureus MSCRAMM bone sialoprotein-binding protein (Bbp) might recognize host molecules other than the identified bone protein. A ligand screen revealed that Bbp binds human fibrinogen (Fg) but not Fg from other mammals. We have characterized the interaction between Bbp and Fg. The binding site for Bbp was mapped to residues 561-575 in the Fg Aα chain using recombinant Fg chains and truncation mutants in Far Western blots and solid-phase binding assays. Surface plasmon resonance was used to determine the affinity of Bbp for Fg. The interaction of Bbp with Fg peptides corresponding to the mapped residues was further characterized using isothermal titration calorimetry. In addition, Bbp expressed on the surface of bacteria mediated adherence to immobilized Fg Aα. Also, Bbp interferes with thrombin-induced Fg coagulation. Together these data demonstrate that human Fg is a ligand for Bbp and that Bbp can manipulate the biology of the Fg ligand in the host.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191021 | PMC |
http://dx.doi.org/10.1074/jbc.M110.214981 | DOI Listing |
Molecules
January 2025
School of Materials and Environment, Beijing Institute of Technology, Zhuhai 519088, China.
This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ()-3-(2-(1-benzo[]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies.
View Article and Find Full Text PDFCells
January 2025
College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea.
Endocrine-disrupting chemicals (EDCs), including phthalates, have been implicated in the development of non-alcoholic fatty liver disease (NAFLD) and hepatic fibrosis. This study investigates the age-dependent effects of butyl benzyl phthalate (BBP) exposure on lipid metabolism in the livers of young and aged mice. Young (2-month-old) and aged (20-month-old) male C57BL/6 mice were exposed to BBP through drinking water at a dose of 169 μg/kg/day for 6 and 4 months, respectively.
View Article and Find Full Text PDFToxicol Res (Camb)
February 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Baha University, Al-Baha 65779, Saudi Arabia.
Background: Microplastics are tiny plastic particles, typically less than 5 mm in size, formed from the breakdown of larger plastic products. This breakdown releases additives, including benzyl butyl phthalate (BBP), into the environment. Humans can be exposed to BBP through contaminated food and water, inhalation, and dermal contact.
View Article and Find Full Text PDFSci Total Environ
January 2025
Social Development and Health Promotion Research Center, Health Policy and Promotion Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran. Electronic address:
Nowadays, polyethylene terephthalate (PET) bottles are widely used for packaging drinks and food. However, concerns have been raised about the possible migration of harmful chemicals, particularly phthalates, from these containers into their contents. Therefore, this study investigates the effects of sunlight exposure and PET bottle reuse on phthalate migration, focusing on three common phthalates: bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and benzyl butyl phthalate (BBP).
View Article and Find Full Text PDFHeliyon
January 2025
Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh.
Background: Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns.
Methods: Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!