Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
GDF5 is involved in synovial joint development, maintenance and repair, and the rs143383 C/T single nucleotide polymorphism (SNP) located in the 5'UTR of GDF5 is associated, at the genome-wide significance level, with osteoarthritis susceptibility, and with other musculoskeletal phenotypes including height, congenital hip dysplasia and Achilles tendinopathy. There is a significant reduction in the expression of the disease-associated T allele relative to the C allele in synovial joint tissues, an effect influenced by a second SNP (rs143384, C/T) also within the 5'UTR. The differential allelic expression (DAE) imbalance of the C and T alleles of rs143383 varies intra- and inter-individually, suggesting that DAE may be modulated epigenetically. The C alleles of both SNPs form CpG dinucleotides that are potentially amenable to regulation by methylation. Here, we have examined whether DNA methylation regulates GDF5 expression and the allelic imbalance caused by rs143383. We observed methylation of the GDF5 promoter and 5'UTR in cell lines and joint tissues, with demethylation correlating with increased GDF5 expression. The CpG sites created by the C alleles at rs143383 and rs143384 were variably methylated, and treatment of a heterozygous cell line with a demethylating agent further increased the allelic expression imbalance between the C and T alleles. This demonstrates that the genetic effect of the rs143383 SNP on GDF5 expression is modulated epigenetically by DNA methylation. The variability in DAE of rs143383 is therefore partly accounted for by differences in DNA methylation that could influence the penetrance of this allele in susceptibility to common musculoskeletal diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddr253 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!