The taxonomic placement of freshwater and marine Savoryella species has been widely debated, and the genus has been tentatively assigned to various orders in the Sordariomycetes. The genus is characterized as possessing paraphyses that deliquesce early, elongate, clavate to cylindrical asci with a poorly developed apical ring and versicolored, three-septate ascospores. We performed two combined phylogenetic analyses of different genes: (i) partial small subunit rRNA (SSU), large subunit rRNA (LSU), DNA-dependent RNA polymerase II largest subunit (rpb2) dataset and (ii) SSU rDNA, LSU rDNA, DNA-dependent RNA polymerase II largest subunit (rpb1 and rpb2), translation elongation factor 1-alpha (tef1), the 5.8S ribosomal DNA (5.8S rDNA) dataset. Our results indicate that Savoryella species formed a monophyletic group within the Sordariomycetes but showed no affinity to the Hypocreales, Halosphaeriales (now Microascales), Sordariales and Xylariales, despite earlier assignments to these orders. Savoryella, Ascotaiwania and Ascothailandia (and its anamorph, Canalisporium) formed a new lineage that has invaded both marine and freshwater habitats, indicating that these genera share a common ancestor and are closely related. Because they show no clear relationship with any named order we erect a new order Savoryellales in the subclass Hypocreomycetidae, Sordariomycetes. The genera Savoryella and Ascothailandia are monophyletic, while the position of Ascotaiwania is unresolved. All three genera are phylogenetically related and form a distinct clade similar to the unclassified group of marine ascomycetes comprising the genera Swampomyces, Torpedospora and Juncigera (TBM clade: Torpedospora/Bertia/Melanospora) in the Hypocreomycetidae incertae sedis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3852/11-102 | DOI Listing |
Curr Microbiol
February 2024
School of Life Sciences, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China.
Soybean are one of the main oil crops in the world. The study demonstrated that co-inoculation with Trichoderma asperellum (Sordariomycetes, Hypocreomycetidae) and Irpex laceratus (Basidiomycota, Polyporales) isolated from Kosteletzkya virginica can promote the growth of soybean seedlings. The two fungi were found to produce various enzymes, including cellulase, amylase, laccase, protease, and urease.
View Article and Find Full Text PDFLife (Basel)
September 2021
Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China.
An undetermined saprobic fungal taxon from Yunnan (China) is revealed as a new genus in (). The novel taxon, , is characterized by immersed to erumpent, semi-globose ascomata, which are not surrounded by any tomentum or conspicuous subiculum, a subcylindrical quellkörper in the centrum, clavate asci with long pedicels and allantoid hyaline ascospores with granular contents. Maximum likelihood and Bayesian posterior probability analyses based on LSU, ITS, and sequence data depict a close phylogenetic relationship of the new genus to , hence, confirming its placement in .
View Article and Find Full Text PDFSci Rep
June 2019
University of Ljubljana, Biotechnical Faculty, Agronomy Department, Ljubljana, 1000, Slovenia.
The conserved RNA interference mechanism (RNAi) in the fungal kingdom has become a focus of intense scientific investigation. The three catalytic core components, Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RdRP), and their associated small interfering RNA molecules (siRNAs) have been identified and characterised in several fungal species. Recent studies have proposed that RNAi is a major contributor to the virulence of fungal pathogens as a result of so-called trans-kingdom RNA silencing.
View Article and Find Full Text PDFMol Plant Pathol
July 2018
CSIRO Agriculture and Food Queensland Bioscience Precinct, St. Lucia, Qld 4067, Australia.
Diseases caused by Fusarium pathogens inflict major yield and quality losses on many economically important plant species worldwide, including cereals. Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is a cereal disease that occurs in many arid and semi-arid cropping regions of the world. In recent years, this disease has become more prevalent, in part as a result of the adoption of moisture-preserving cultural practices, such as minimum tillage and stubble retention.
View Article and Find Full Text PDFPersoonia
June 2015
Laboratory of Enzyme Technology, Institute of Microbiology of the Academy of Sciences, Prague, Czech Republic.
Four morphologically similar specimens of an unidentified perithecial ascomycete were collected on decaying wood submerged in fresh water. Phylogenetic analysis of DNA sequences from protein-coding and ribosomal nuclear loci supports the placement of the unidentified fungus together with Achroceratosphaeria in a strongly supported monophyletic clade. The four collections are described as two new species of the new genus Pisorisporium characterised by non-stromatic, black, immersed to superficial perithecial ascomata, persistent paraphyses, unitunicate, persistent asci with an amyloid apical annulus and hyaline, fusiform, cymbiform to cylindrical, transversely multiseptate ascospores with conspicuous guttules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!