Natural polysaccharides, due to their outstanding merits, have received more and more attention in the field of drug delivery. In the present study tamoxifen citrate, TMX (a non-steroidal antiestrogenic drug) loaded guar gum nanoparticles, GG NPs, crosslinked with glutaraldehyde were prepared for treatment of breast cancer. An oil in water (o/w) emulsion polymer cross-linking method was employed for preparation of blank and drug loaded sustained release nature biodegradable nanoparticles. Prepared nanoparticles were characterized by morphology in scanning electron microscope (SEM), size distribution in transmission electron microscope (TEM), TMX loading by high performance liquid chromatography (HPLC) and in vitro drug release characteristics. An overall sustained release of the drug from the biodegradable nanoparticles was observed in in vitro release studies. The release of TMX from GG NPs was found to be effected by guar gum and glutaraldehyde concentration. Regression coefficient (R(2)) analysis suggested that the predominant mechanism behind the drug release from the nanoparticles was time dependent release and diffusion. In vivo studies on female albino mice demonstrated maximum uptake of the drug by mammary tissue after 24h of administration with drug loaded guar gum nanoparticles in comparison with that with the tablet form of the drug. These findings demonstrate that controlled release of TMX from GG NPs could be a potential alternative pharmaceutical formulation in passive targeting of TMX in breast cancer treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2011.05.020 | DOI Listing |
Int J Biol Macromol
January 2025
College of Biological Science and Engineering, Chuzhou University, Chuzhou, Anhui, China.
The synergistic effect of natural guar gum (GG), konjac gum (KGM) and sodium 2-oxopropanoic acid sodium (2-OAS) to designed a novel physical cross-linked three-dimensional network structure GG@2-OAS@KGM as a carrier of active microorganisms for mold and yeast sensitive detection. At the ratio of 6:2:2 (w/w/w), GG@2-OAS@KGM possessed a uniform porous structure. After treatment for 120 h, the hydrogel exhibits higher water holding capacity (WHC, 71.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2025
Department of Medical Affairs, Curie Sciences, Samastipur, Bihar, India.
Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate.
View Article and Find Full Text PDFFood Sci Biotechnol
January 2025
Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, 10326 Gyeonggi Korea.
Unlabelled: Our study sought to investigate how the fluidized-bed agglomeration process, incorporating sugar and sugar alcohol binders, affects the physical and rheological properties of milk protein isolate (MPI)-guar gum (GG) mixtures. The agglomerated MPI-GG mixtures (AMGs) consisted of larger and more porous particles with a uniform particle size distribution and showed better solubility compared to non-agglomerated MG (NMG). Additionally, the agglomeration process with binders improved powder flowability by reducing powder cohesion.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China.
This work investigated the effects of curdlan gum-guar gum composite microgels (CG microgels) as a fat replacer on the gel properties, water distribution, and microstructures of pork meat batters, using techniques including rheometry, SEM, and LF-NMR. Between 55 °C and 80 °C, the addition of 30 % CG microgels enhanced the viscoelastic response of pork meat batters. Additionally, the CG microgels reduced cooking loss from 18.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!