Film electrodes prepared from oppositely charged silicate submicroparticles and carbon nanoparticles was applied for selective dopamine sensing. Mesoporous silicate submicroparticles with tetraalkylammonium functionalities were prepared by sol-gel method. They were immobilised on an indium tin oxide film surface together with phenylsulphonated carbon nanoparticles by layer-by-layer method: alternative immersion into their suspensions. As it is shown by scanning electron microscopy the obtained film is composed of silicate submicroparticles covered by carbon nanoparticles. The nanoparticulate film is stable and its electroactive surface is significantly larger than substrate. Accumulation of redox active cations indicates that only fraction charged functionalities of carbon nanoparticles are employed in film formation. The obtained electrode exhibits catalytic properties towards dopamine oxidation and its interferences as ascorbic acid, uric acid and acetaminophen. This allows for selective determination of tenth micromolar concentration of dopamine in the presence of these interferences at milimolar level. The detection limit and linear range were determined to 0.1 × 10⁻⁶ mol dm⁻³ and 0.3-18 × 10⁻⁶ mol dm⁻³ respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2011.04.054DOI Listing

Publication Analysis

Top Keywords

carbon nanoparticles
20
silicate submicroparticles
16
prepared oppositely
8
oppositely charged
8
charged silicate
8
submicroparticles carbon
8
selective dopamine
8
dopamine sensing
8
10⁻⁶ mol
8
mol dm⁻³
8

Similar Publications

This study investigated the antimicrobial efficacy of graphene, titanium dioxide nanoparticles (TiO2NPs), and calcium oxide nanoparticles (CaONPs) against various microorganisms in dairy wastewater. The minimum inhibitory concentration (MIC) of graphene was determined to be 41.66 mg/L for Escherichia coli and 33.

View Article and Find Full Text PDF

Discovery and Characterization of a Metastable Cubic Interstitial Nickel-Carbon System with an Expanded Lattice.

ACS Nano

January 2025

Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.

Metastable, , kinetically favored but thermodynamically not stable, interstitial solid solutions of carbon in iron are well-understood. Carbon can occupy the interstitial atoms of the host metal, altering its properties. Alloying of the host metal results in the stabilization of the FeC phases, widening its application.

View Article and Find Full Text PDF

Laser-Induced Metal-Organic Framework-Derived Flexible Electrodes for Electrochemical Sensing.

ACS Appl Mater Interfaces

January 2025

Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.

The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.

View Article and Find Full Text PDF

Nanozymes open up new avenues for amplifying signals in photoelectrochemical (PEC) biosensing, which are yet limited by the generated small-molecule signal reporters. Herein, a multifunctional nanoenzyme of Pt NPs/CoSAs@NC consisting of Co single atoms on N-doped porous carbon decorated with Pt nanoparticles is successfully synthesized for cascade catalytic polymerization of dopamine for constructing a highly sensitive photocurrent-polarity-switching PEC biosensing platform. Taking protein tyrosine phosphatase 1B (PTP1B) as a target model, Pt NPs/CoSAs@NC nanoenzymes are linked to magnetic microspheres via phosphorylated peptides.

View Article and Find Full Text PDF

Fabricating ZnO@C composites based on shell-derived cellulose for high performance lithium-ion battery anodes.

Heliyon

December 2024

Department of Chemical, Biological & Battery Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.

In this study, shell-derived cellulose was successfully produced, and the hydrothermal method was employed to generate ZnO@C (ZOC) composites, which were then subjected to calcination in N gas at a temperature of 600 °C for varying durations. X-ray diffraction and thermogravimetric analyses demonstrated that the annealing duration had a substantial impact on the quantities of C and ZnO in the ZOC composites. The scanning electron microscope images indicated the presence of ZnO nanoparticles on the surface of the C phase and revealed a similar morphology among the ZOC composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!