Green analytical methods employing flow analysis with simple natural reagent extracts have been exploited. Various formats of flow based analysis systems including a single line FIA, a simple lab on chip with webcam camera detector, and a newly developed simple lab on chip system with reflective absorption detection and the simple extracts from some available local plants including butterfly pea flower, orchid flower, and beet root were investigated and shown to be useful as alternative self indicator reagents for acidity assay. Various tea drinks were explored to be used for chromogenic reagents in iron determination. The benefit of a flow based system, which allows standards and samples to go through the analysis process in exactly the same conditions, makes it possible to employ simple natural extracts with minimal or no pretreatment or purification. The combinations of non-synthetic natural reagents with minimal processed extracts and the low volume requirement flow based systems create some unique green chemical analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2011.03.090DOI Listing

Publication Analysis

Top Keywords

simple natural
12
flow based
12
green analytical
8
employing flow
8
flow analysis
8
analysis simple
8
natural reagent
8
reagent extracts
8
simple lab
8
lab chip
8

Similar Publications

The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.

View Article and Find Full Text PDF

Extending Exciton Diffusion Length via an Organic-Metal Platinum Complex Additive for High-Performance Thick-Film Organic Solar Cells.

Adv Mater

January 2025

Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China.

The long exciton diffusion length (L) plays an important role in promoting exciton dissociation, suppressing charge recombination, and improving the charge transport process, thereby improving the performance of organic solar cells (OSCs), especially in thick-film OSCs. However, the limited L hinders further improvement in device performance as the film thickness increases. Here, an organic-metal platinum complex, namely TTz-Pt, is synthesized and served as a solid additive into the D18-Cl:L8-BO system.

View Article and Find Full Text PDF

In this study, a simple and efficient method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) has been developed through a one-step hydrothermal process using hedyotis diffusa willd. The morphology, chemical composition, and optical properties of the resulting N-CQDs were thoroughly characterized. The synthesized N-CQDs exhibited a spherical shape with an average particle size of 4.

View Article and Find Full Text PDF

A simple and inexpensive process from natural phosphate in the presence of Ag ions was used to develop AgO-loaded hydroxyapatite nanocomposites. The structural and textural characterization of the nanocomposites suggests that the AgO nanoparticles are well dispersed on the hydroxyapatite (HAp). The prepared nanocomposites show efficient Rhodamine B (RhB) dye photocatalytic degradation in water under visible and UV-visible light irradiation.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) provide an essential functional link between an mRNA sequence and the protein it encodes. aaRS enzymes catalyze a two-step chemical reaction that acylates specific tRNAs with a cognate α-amino acid. In addition to their role in translation, acylated tRNAs contribute to non-ribosomal natural product biosynthesis and are implicated in multiple human diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!