In this work, the use of three-electrode electrochemical sensing system with an electrowetting-on-dielectric (EWOD) digital microfluidic device is reported for quantitative analysis of iodide. T-junction EWOD mixer device was designed using arrays of 50-μm spaced square electrodes for mixing buffer reagent and analyte droplets. For fabrication of EWOD chips, 5-μm thick silver EWOD electrodes were formed on a glass substrate by means of sputtering and lift-off process. PDMS and Teflon thin films were then coated on the electrodes by spin coating to yield hydrophobic surface. An external three-electrode system consisting of Au working, Ag reference and Pt auxiliary wires were installed over EWOD electrodes at the end of T-junction mixer. In experiment, a few-microliter droplets of Tris buffer and iodide solutions were moved toward the mixing junction and transported toward electrochemical electrodes by EWOD process. A short processing time within seconds was achieved at EWOD applied voltage of 300V. The analyte droplets mixed with different concentrations were successfully analyzed by cyclic voltametry. Therefore, the combination of EWOD digital microfluidic and electrochemical sensing system has successfully been demonstrated for rapid chemical analysis with minimal reagent consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2011.03.073DOI Listing

Publication Analysis

Top Keywords

digital microfluidic
12
electrochemical sensing
8
sensing system
8
ewod
8
ewod digital
8
analyte droplets
8
ewod electrodes
8
electrodes
5
electrochemical
4
electrochemical detection
4

Similar Publications

Digital PCR (dPCR) has transformed nucleic acid diagnostics by enabling the absolute quantification of rare mutations and target sequences. However, traditional dPCR detection methods, such as those involving flow cytometry and fluorescence imaging, may face challenges due to high costs, complexity, limited accuracy, and slow processing speeds. In this study, SAM-dPCR is introduced, a training-free open-source bioanalysis paradigm that offers swift and precise absolute quantification of biological samples.

View Article and Find Full Text PDF

Design, additive manufacturing, and characterization of an organ-on-chip microfluidic device for oral mucosa analogue growth.

J Mech Behav Biomed Mater

December 2024

Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece. Electronic address:

Introduction: Α customized organ-on-a-chip microfluidic device was developed for dynamic culture of oral mucosa equivalents (Oral_mucosa_chip-OMC).

Materials And Methods: Additive Manufacturing (AM) was performed via stereolithography (SLA) printing. The dimensional accuracy was evaluated via microfocus computed tomography (mCT), the surface characteristics via scanning electron microscopy (SEM), while the mechanical properties via nanoindentation and compression tests.

View Article and Find Full Text PDF

Tunable Picoliter-Scale Dropicle Formation Using Amphiphilic Microparticles with Patterned Hydrophilic Patches.

Adv Sci (Weinh)

December 2024

Control and Manipulation of Microscale Living Objects, Center for Translational Cancer Research (TranslaTUM), Munich Institute of Biomedical Engineering (MIBE), Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany.

Microparticle-templated droplets or dropicles have recently gained interest in the fields of diagnostic immunoassays, single-cell analysis, and digital molecular biology. Amphiphilic particles have been shown to spontaneously capture aqueous droplets within their cavities upon mixing with an immiscible oil phase, where each particle templates a single droplet. Here, an amphiphilic microparticle with four discrete hydrophilic patches embedded at the inner corners of a square-shaped hydrophobic outer ring of the particle (4C particle) is fabricated.

View Article and Find Full Text PDF

This perspective discusses the convergence of digital twin (DT) technology and on-the-chip systems as pivotal innovations in precision medicine, substantially advancing drug discovery. DT leverages extensive health data to create dynamic virtual patient models, enabling predictive insights and optimized treatment strategies. Concurrently, on-the-chip systems from the Carbon world replicate human biological processes on microfluidic platforms, providing detailed insights into disease mechanisms and pharmacological interactions.

View Article and Find Full Text PDF

Eco-sustainable point-of-care devices: Progress in paper and fabric based electrochemical and colorimetric biosensors.

Talanta

December 2024

Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014, India. Electronic address:

Monitoring real-time health conditions is a rinsing demand in a pandemic prone era. Wearable Point-of-Care (POC) devices with paper and fabric-based sensors are emerging as simple, low-cost, portable, and disposable analytical tools for development of green POC devices (GPOCDs). Capabilities of passive fluid transportation, compatibility with biochemical analytes, disposability and high degree of tunability using vivid device fabrication strategies enables development of highly sensitive and economically feasible POC sensors in particularly post COVID-19 pandemic outbreak.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!