During acute lung injury and repair, leukocytes are thought to enter the lung primarily across alveolar capillaries and postcapillary venules. We hypothesized that leukocytes also migrate across pulmonary arterioles and venules, which serve as alternative sites for leukocyte influx into the lung during acute lung injury and repair. Lung sections from C57BL/6J mice up to 14 days after intratracheal bleomycin (3.33 U/kg) or saline instillation were assessed by light, fluorescence, confocal, and transmission electron microscopy for evidence of inflammatory cell sequestration and transmigration at these sites. After bleomycin treatment, large numbers of leukocytes (including neutrophils, eosinophils, and monocytes) were present in the vascular lumina and in perivascular interstitia of pulmonary arterioles and venules, as well as within the vascular walls. Leukocytes were observed within well-defined pathways in arteriolar walls and much less structured pathways in venular walls, apparently in the process of transmigration. Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were expressed at sites of leukocyte interaction with the luminal surface, especially in arterioles. Leukocytes appeared to exit from the vessels near collagen fibers into the perivascular interstitium. Results indicate that leukocytes can directly migrate across arteriolar and venular walls into the perivascular interstitium, which may represent an important but under-recognized pathway for leukocyte influx into the lung during injury and repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124021 | PMC |
http://dx.doi.org/10.1016/j.ajpath.2011.02.047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!