Location trumps length: polyglutamine-mediated changes in folding and aggregation of a host protein.

Biophys J

Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin, USA.

Published: June 2011

Expanded CAG diseases are progressive neurodegenerative disorders in which specific proteins have an unusually long polyglutamine stretch. Although these proteins share no other sequence or structural homologies, they all aggregate into intracellular inclusions that are believed to be pathological. We sought to determine what impact the position and number of glutamines have on the structure and aggregation of the host protein, apomyoglobin. Variable-length polyQ tracts were inserted either into the loop between the C- and D-helices (Q(n)CD) or at the N-terminus (Q(n)NT). The Q(n)CD mutants lost some α-helix and gained unordered and/or β-sheet in a length-dependent manner. These mutants were partially unfolded and rapidly assembled into soluble chain-like oligomers. In sharp contrast, the Q(n)NT mutants largely retained wild-type tertiary structure but associated into long, fibrillar aggregates. Control proteins with glycine-serine repeats (GS(8)CD and GS(8)NT) were produced. GS(8)CD exhibited similar structural perturbations and aggregation characteristics to an analogously sized Q(16)CD, indicating that the observed effects are independent of amino acid composition. In contrast to Q(16)NT, GS(8)NT did not form fibrillar aggregates. Thus, soluble oligomers are produced through structural perturbation and do not require polyQ, whereas classic fibrils arise from specific polyQ intermolecular interactions in the absence of misfolding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117178PMC
http://dx.doi.org/10.1016/j.bpj.2011.04.028DOI Listing

Publication Analysis

Top Keywords

aggregation host
8
host protein
8
fibrillar aggregates
8
location trumps
4
trumps length
4
length polyglutamine-mediated
4
polyglutamine-mediated changes
4
changes folding
4
folding aggregation
4
protein expanded
4

Similar Publications

Aiming toward a novel, noninvasive technique, with a real-time potential application in the monitoring of the complexation of steroidal neuromuscular blocker drugs Vecuronium () and Rocuronium () with sugammadex (, medication for the reversal of neuromuscular blockade induced by or in general anesthesia), we developed proof-of-principle methodology based on surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles prepared by the reduction of silver ions with hydroxylamine hydrochloride were used as SERS-active substrates, additionally aggregated with calcium nitrate as needed. The and SERS spectra were obtained within the biorelevant 5 × 10-1 × 10 M range, as well as the SERS of , though the latter was observed only in the presence of the aggregating agent.

View Article and Find Full Text PDF

Identification of the Highly Polymorphic Prion Protein Gene () in Frogs ).

Animals (Basel)

January 2025

Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea.

Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPs, encoded by the endogenous prion protein gene (). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the gene have not been investigated.

View Article and Find Full Text PDF

Despite their high clinical relevance, obtaining structural and biophysical data on transmembrane proteins has been hindered by challenges involved in their expression and extraction in a homogeneous, functionally-active form. The inherent enzymatic activity of receptor tyrosine kinases (RTKs) presents additional challenges. Oncogenic fusions of RTKs with heterologous partners represent a particularly difficult-to-express protein subtype due to their high flexibility, aggregation propensity and the lack of a known method for extraction within the native lipid environment.

View Article and Find Full Text PDF

Dual-Asymmetric Solid Additive Enables Eco-friendly All-Polymer Solar Cells with Over 19% Efficiency and Excellent Stability.

Angew Chem Int Ed Engl

January 2025

Guangzhou University, Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006 P, 510006, Guangzhou, CHINA.

The optimization of morphology in all-polymer solar cells (all-PSCs) often relies on the use of solvent additives. However, their tendency to remain trapped in the device due to high boiling points leads to performance degradation over time. In this study, we introduce a novel approach involving the design and synthesis of one dual-asymmetric solid additive featuring mono-brominated-asymmetric dithienothiophene (SL-1).

View Article and Find Full Text PDF

Tetrahedral Framework Nucleic Acid Relieves Sepsis-Induced Intestinal Injury by Regulating M2 Macrophages.

Cell Prolif

January 2025

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Department of Burns and Plastic Surgery, Chengdu, People's Republic of China.

This study aimed to clarify the role and mechanism of tetrahedral framework nucleic acids (tFNAs) in regulating M2 macrophages to reduce intestinal injury. An intestinal injury model was established by intraperitoneal injection of lipopolysaccharides (LPS) in mice to explore the alleviating effects of tFNAs on intestinal injury. Inflammatory factors were detected by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!