This paper describes the creation of hybrid surfaces containing cationic nanoparticles and biocompatible PEG (polyethylene glycol) brushes that manipulate bacterial adhesion for potential diagnostic and implant applications. Here, ∼10 nm cationically functionalized gold nanoparticles are immobilized randomly on negative silica surfaces at tightly controlled surface loadings, and the remaining areas are functionalized with a hydrated PEG brush, using a graft copolymer of poly-l-lysine and PEG (PLL-PEG), containing 2000 molecular weight PEG chains and roughly 30% functionalization of the PLL. The cationic nanoparticles attract the negative surfaces of suspended Staphylococcus aureus bacteria while the PEG brush exerts a steric repulsion. With the nanoparticle and PEG brush heights on the same lengthscale, variations in ionic strength are demonstrated to profoundly influence the capture of S. aureus on these surfaces. For bacteria captured from gentle flow, a crossover from multivalent to univalent binding is demonstrated as the Debye length is increased from 1 to 4 nm. In the univalent regime, 1 um diameter spherical bacteria are captured and held by single nanoparticles. In the multivalent regime, there is an adhesion threshold in the surface density of nanoparticles needed for bacterial capture. The paper also documents an interesting effect concerning the relaxations in the PLL-PEG brush itself. For brushy surfaces containing no nanoparticles, bacterial adhesion persists on newly formed brushes, but is nearly eliminated after these brushes relax, at constant mass in buffer for 12h. Thus brushy relaxations increase biocompatibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2011.05.010 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.
Diabetic wound healing remains a major challenge in modern medicine. The persistent inflammation and immune dysfunction hinder angiogenesis by producing excessive ROS and increasing the susceptibility to bacterial infection. In this study, we developed an integrated strategy for whole-process management of diabetic wounds based on a bioinspired adhesive hydrogel platform with hemostasis, photothermal antimicrobial, antioxidant, anti-inflammatory, and angiogenic properties.
View Article and Find Full Text PDFNano Lett
January 2025
Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
Nanostructuring surfaces is an emergent strategy to endow materials with abilities to combat pathogenic bacteria. Nevertheless, it remains challenging to create nanospike structures on the curved surfaces of polymer materials, including gauze and other microfibrous medical materials. Additionally, the effects of nanostructured surfaces on bacteria in the presence of proteins and in vivo remain largely unexplored.
View Article and Find Full Text PDFJ Adv Prosthodont
December 2024
Department Prosthetic Dental Sciences, College of Dentistry, Jouf University, Jouf, Saudia Arabia.
Purpose: This study assessed the microgap width and adhesion of three bacterial species in four dental implants with different interlocks under four screwing torques.
Materials And Methods: Ten samples of four implant systems with various interlockings, including full-hexagonal (FHI), cylindrical-conical trilobe-index (TLI), Morse-taper with octagon terminal index (OI), and hexagonal interlock (slip-fit) (HI-SF), were used. The abutments were screwed to the fixtures under torques of 10, 20, 30, and 40 Ncm.
Int J Pharm
January 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190 China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 China. Electronic address:
Trauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia.
cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!