Coalescence map for bubbles in surfactant-free aqueous electrolyte solutions.

Adv Colloid Interface Sci

Institute for Technology Research and Innovation, Deakin University, Victoria, Australia.

Published: October 2011

Factors influencing bubble coalescence in surfactant-free aqueous electrolyte solutions are considered in this compilation of literature results. These factors include viscous and inertial thin film drainage, surface deformation, surface elasticity, mobility or otherwise of the air-water interface, and disjoining pressure. Several models from the literature are discussed, with particular attention paid to predictions of transitions between regions where behaviour is qualitatively different. The transitions are collated onto a single chart with salt concentration and bubble approach speed as the axes. This creates a map of the regions in which different mechanisms operate, giving an overall picture of bubble coalescence behaviour over a wide range of concentration and speed. Only mm-size bubbles in water and NaCl solutions are discussed in this initial effort at creating such a map. Data on bubble coalescence or non-coalescence are collected from the literature and plotted on the same map, generally aligning well with the predicted transitions and thus providing support for the theoretical reasoning that went into creating the coalescence map.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2011.05.006DOI Listing

Publication Analysis

Top Keywords

bubble coalescence
12
coalescence map
8
surfactant-free aqueous
8
aqueous electrolyte
8
electrolyte solutions
8
coalescence
5
map bubbles
4
bubbles surfactant-free
4
solutions factors
4
factors influencing
4

Similar Publications

Introduction: Whether in industrial production or daily life, froth plays an important role in many processes. Sometimes, froth exists as a necessity and is also regarded as the typical characteristic of products, e.g.

View Article and Find Full Text PDF

Enhancing Hydrogen Evolution Reaction through Coalescence-Induced Bubble Departure on Patterned Gold-Silicon Microstrip Surfaces.

ACS Appl Mater Interfaces

January 2025

Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, Massachusetts 02215, United States.

Hydrogen bubble adhesion to the electrode presents a major obstacle for green hydrogen generation via the hydrogen evolution reaction (HER) as it would induce undesired overpotential and undermine the reaction efficiency by reducing reaction area, increasing transport resistance, and creating an undesired ion concentration gradient. While electrodes with aerophobic/hydrophilic surfaces have been developed to facilitate bubble detachment, they primarily rely on micro- and nanostructured catalyst surfaces to enhance buoyance-induced bubble departure. Here, we demonstrate that introducing nonreactive yet more hydrophilic surfaces can promote coalescence-induced bubble departure, thereby significantly reducing the transport overpotential and improving HER performance.

View Article and Find Full Text PDF

Real-time thermal imaging of expansion dynamics during extrusion of protein-fortified snacks: Effects of nitrogen gas and protein concentration.

Food Res Int

January 2025

Department of Food and Human Nutritional Sciences, University of Manitoba, Richardson Centre for Food Technology and Research, 196 Innovation Drive, Winnipeg, MB R3T 2N2, Canada. Electronic address:

The physical quality challenges associated with incorporating proteins into puffed snacks can be mitigated using blowing agents. This study examined the effect of nitrogen gas as a physical blowing agent, on the expansion dynamics (e.g.

View Article and Find Full Text PDF

Numerical simulation of bubble rising behavior in a tannin-based foaming precursor resin.

Heliyon

November 2024

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming, 650224, China.

A two-dimensional volume of fluid (VOF) model was developed to simulate the deformation of the bubble, the end speed of bubble rise, the distance of bubble rise and the movement trajectory in different initial conditions of tannin-based foaming precursor resin. In this study, bubble rising and coalescence characteristics are connected with parameters of the resin, especially viscosity, surface tension, the initial radius and location of the bubble also matter. The result shows that rising velocity of the bubble decreased as the viscosity increased, and at the same time, the flow rate of the bubble was lower.

View Article and Find Full Text PDF

Hydrophobicity of Benzene-Based Surfactants and Its Effect on Bubble Coalescence Inhibition.

Molecules

October 2024

Laboratorio de Superficies, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.

Bubble coalescence plays a critical role in optimizing biological and industrial processes, impacting efficiency in areas such as fermentation, wastewater treatment, and foaming control. While the relationship between chemical structure and bubble coalescence has been thoroughly explored for inorganic ions, limited data exist on organic ions and surfactants, despite their widespread use in these industries. This study addresses this gap by investigating the effects of surfactant hydrophobicity and bubble size on coalescence behavior at a flat air-liquid interface and within a bubble column.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!