SMG-9 is a component of the NMD complex, a heterotetramer that also includes SMG-1 and SMG-8 in the complex. SMG-9 was also originally identified as a tyrosine-phosphorylated protein but the role of the phosphorylation is not yet known. In this study, we determined that IQGAP protein, an actin cytoskeleton modifier acts as a binding partner with SMG-9 and this binding is regulated by phosphorylation of SMG-9 at Tyr-41. SMG-9 is co-localized with IQGAP1 as a part of the process of actin enrichment in non-stimulated cells, but not in the EGF-stimulated cells. Furthermore, an increase in the ability of SMG-9 to bind to SMG-8 occurs in response to EGF stimulation. These results suggest that tyrosine phosphorylation of SMG-9 may play a role in the formation of the NMD complex in the cells stimulated by the growth factor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2011.05.099DOI Listing

Publication Analysis

Top Keywords

phosphorylation smg-9
12
nmd complex
12
smg-9
9
tyrosine phosphorylation
8
smg-9 binding
8
complex smg-9
8
role tyrosine
4
phosphorylation
4
binding smg-9
4
smg-9 iqgap
4

Similar Publications

A network of SMG-8, SMG-9 and SMG-1 C-terminal insertion domain regulates UPF1 substrate recruitment and phosphorylation.

Nucleic Acids Res

September 2015

European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble, France School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK

Mammalian nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that degrades mRNAs containing premature translation termination codons. Phosphorylation of the essential NMD effector UPF1 by the phosphoinositide-3-kinase-like kinase (PIKK) SMG-1 is a key step in NMD and occurs when SMG-1, its two regulatory factors SMG-8 and SMG-9, and UPF1 form a complex at a terminating ribosome. Electron cryo-microscopy of the SMG-1-8-9-UPF1 complex shows the head and arm architecture characteristic of PIKKs and reveals different states of UPF1 docking.

View Article and Find Full Text PDF

SMG-9 is a component of the NMD complex, a heterotetramer that also includes SMG-1 and SMG-8 in the complex. SMG-9 was also originally identified as a tyrosine-phosphorylated protein but the role of the phosphorylation is not yet known. In this study, we determined that IQGAP protein, an actin cytoskeleton modifier acts as a binding partner with SMG-9 and this binding is regulated by phosphorylation of SMG-9 at Tyr-41.

View Article and Find Full Text PDF

The nonsense-mediated mRNA decay SMG-1 kinase is regulated by large-scale conformational changes controlled by SMG-8.

Genes Dev

January 2011

Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (Consejo Superior de Investigaciones Científicas, CSIC), 28040 Madrid, Spain.

Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that regulates the degradation of mRNAs harboring premature translation termination codons. NMD also influences the expression of many physiological transcripts. SMG-1 is a large kinase essential to NMD that phosphorylates Upf1, which seems to be the definitive signal triggering mRNA decay.

View Article and Find Full Text PDF

Characterization of SMG-9, an essential component of the nonsense-mediated mRNA decay SMG1C complex.

Nucleic Acids Res

January 2011

Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain.

SMG-9 is part of a protein kinase complex, SMG1C, which consists of the SMG-1 kinase, SMG-8 and SMG-9. SMG1C mediated phosphorylation of Upf1 triggers nonsense-mediated mRNA decay (NMD), a eukaryotic surveillance pathway that detects and targets for degradation mRNAs harboring premature translation termination codons. Here, we have characterized SMG-9, showing that it comprises an N-terminal 180 residue intrinsically disordered region (IDR) followed by a well-folded C-terminal domain.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that detects and degrades mRNAs containing premature translation termination codons (PTCs). SMG-1 and Upf1 transiently form a surveillance complex termed "SURF" that includes eRF1 and eRF3 on post-spliced mRNAs during recognition of PTC. If an exon junction complex (EJC) exists downstream from the SURF complex, SMG-1 phosphorylates Upf1, the step that is a rate-limiting for NMD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!