The role of carbohydrate in thyrotropin action assessed by a novel approach using enzymatic deglycosylation.

J Biol Chem

Molecular Cellular and Nutritional Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892.

Published: July 1990

Deglycosylation of thyrotropin (TSH) and gonadotropins by chemical methods virtually abolishes their biological activity without impairing receptor binding activity. Recent reports have suggested that enzymatic deglycosylation, using endoglycosidases caused a much smaller decrease, if any, in the potency of the glycoprotein hormones without altering the Vmax. However, in these studies complete removal of the carbohydrate chains from the hormones was not unequivocally documented. We have prepared completely deglycosylated bovine TSH by endoglycosidase F digestion of its subunits, which were more readily deglycosylated than the intact hormone. The deglycosylated subunits were separated from any incompletely digested subunits by concanavalin A affinity chromatography. Carbohydrate compositional analysis, using a highly sensitive pulsed amperometric detection method coupled to ion-exchange high performance liquid chromatography, was performed to ascertain the complete removal of the glycan moieties from the subunits. The deglycosylated subunits thus prepared were recombined to obtain deglycosylated TSH dimer. Receptor binding activity of bTSH was minimally affected by the carbohydrate removal. In an in vitro bioassay using stimulation of cyclic AMP production in FRTL-5 cells, deglycosylated bTSH showed reduced activity with a potency 5-10-fold lower than that of control, although the Vmax remained unaltered. In contrast, the deglycosylated bTSH showed a reduction in Vmax, when assayed for its adenylyl cyclase stimulating activity in bovine thyroid membranes. Previous reports using chemical methods have apparently overestimated the effects of deglycosylation, probably because of altered protein conformation, while those using endoglycosidases have apparently underestimated these effects, probably because of incomplete deglycosylation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

enzymatic deglycosylation
8
chemical methods
8
receptor binding
8
binding activity
8
complete removal
8
subunits deglycosylated
8
deglycosylated subunits
8
deglycosylated btsh
8
deglycosylated
7
deglycosylation
5

Similar Publications

EEfficient methods for isolating N-glycans are essential to understanding the functions and characteristics of the entire N-glycome. Enzymatic release using PNGaseF is the most effective approach for releasing mammalian N-glycans for analytical purposes. However, the use of PNGaseF for preparative N-glycan isolation is precluded due to the enzyme's cost and limited stability.

View Article and Find Full Text PDF

The functional role of N-link glycosylation in a novel cellobiohydrolase II (LsCel6A) from a white-rot fungus Lentinus sp. WR2.

Int J Biol Macromol

December 2024

Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan. Electronic address:

White-rot fungi produce a wide spectrum of lignocellulose-degradation enzymes, which can be used in bioenergy, bioremediation, and other industrial applications. This study identified a cellobiohydrolase II (Cel6A, GH6 cellobiohydrolase, EC 3.2.

View Article and Find Full Text PDF

The fruits and vegetables we consume as part of our diet are rich in bioactive metabolites that can prevent and ameliorate cardiometabolic diseases, cancers, and neurological conditions. Polyphenols are a major metabolite family that has been intensively investigated in this context. However, for these compounds to exert their optimal bioactivity, they rely on the enzymatic capacity of an individual's gut microbiota.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe inflammatory condition characterized by excessive immune responses and oxidative stress, leading to significant tissue damage. Given the need for novel therapeutic agents, this study aimed to explore the anti-inflammatory activity and mechanisms of biotransformed root extracts (BT-PGR), which were enzymatically processed using rapidsase PL Classic from . The goal was to assess the potential of BT-PGR as a natural treatment for ALI.

View Article and Find Full Text PDF

Protein glycosylation is recognized as a Critical Quality Attribute for the biological and therapeutic activity of many recombinant proteins. Therefore, glycosylation should be monitored rigorously to ensure the desired quality, safety, and potency of monoclonal antibodies and other therapeutic glycoproteins. However, glycans are highly heterogeneous structures in proteins, and this poses a challenge for glycoprofile analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!