Determining the health impacts of sources and components of fine particulate matter (PM(2.5)) is an important scientific goal. PM(2.5) is a complex mixture of inorganic and organic constituents that are likely to differ in their potential to cause adverse health outcomes. The Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) study focused on two PM sources--coal-fired power plants and mobile sources--and sought to investigate the toxicological effects of exposure to emissions from these sources. The set of papers published here document the power plant experiments. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. TERESA involved withdrawal of emissions from the stacks of three coal-fired power plants in the United States. The emissions were aged and atmospherically transformed in a mobile laboratory simulating downwind power plant plume processing. Toxicological evaluations were carried out in laboratory rats exposed to different emission scenarios with extensive exposure characterization. The approach employed in TERESA was ambitious and innovative. Technical challenges included the development of stack sampling technology that prevented condensation of water vapor from the power plant exhaust during sampling and transfer, while minimizing losses of primary particles; development and optimization of a photochemical chamber to provide an aged aerosol for animal exposures; development and evaluation of a denuder system to remove excess gaseous components; and development of a mobile toxicology laboratory. This paper provides an overview of the conceptual framework, design, and methods employed in the study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703945 | PMC |
http://dx.doi.org/10.3109/08958378.2010.568019 | DOI Listing |
ACS Nano
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.
View Article and Find Full Text PDFiScience
January 2025
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
In 2022, the European Union put forward the REPowerEU plan in response to Russia's invasion of Ukraine, aiming at enhancing short-term energy security by diversifying imports and reducing natural gas demand while accelerating the deployment of renewable alternatives in the long term. Here, we quantify the life cycle environmental impacts of both REPowerEU's short-term measures, including the controversial extended coal-fired power plant operations, and how the first year of the crisis was managed in practice. We find that the policy measures' impact on greenhouse gas (GHG) emissions would be negligible, although they could have detrimental effects on other environmental categories.
View Article and Find Full Text PDFACS Omega
January 2025
College of Safety Science & Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China.
The objective of this study was to evaluate the effect of injecting flue gas (CO, N, and O) originating from coal-fired power plants into a coal seam on CH extraction and CO geological storage. To this end, a multifield thermal-fluid-solid-coupled mathematical model of flue gas injection extraction was established. The results showed that with the increase in time increase, the volume concentration of CH decreased, but the CO, N, and O increased.
View Article and Find Full Text PDFPeerJ
January 2025
Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China.
Background: The objective of the present study is to examine the total phenolic and flavonoid content of an ethanol extract of and to evaluate its phytochemical properties, antioxidant activity, and capacity to protect DNA from damage. This pharmaceutical/food resource mushroom may serve as a novel substitute functional food for health-conscious consumers, given its promising source of phenolics and flavonoids.
Methods: ethanol extract (SEE) was evaluated for total phenolic and flavonoid contents, while UPLC-MS analysis was used for terpenoids, phenylpropanoid, flavonoids, steroidal, phenols identification, and function prediction.
Small
January 2025
Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
Tin halide perovskites are promising candidates for lead-free perovskite solar cells due to their ideal bandgap and high charge-carrier mobility. However, poor crystal quality and rapid degradation in ambient conditions severely limit their stability and practical applications. This study demonstrates that incorporating UiO-66, a zirconium-based MOF, significantly enhances the performance and stability of tin halide perovskite solar cells (TPSCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!