The creation of thin, buried, and electrically conducting layers within an otherwise insulating diamond by annealed ion implantation damage is well known. Establishing facile electrical contact to the shallow buried layer has been an unmet challenge. We demonstrate a new method, based on laser micro-machining (laser ablation), to make reliable electrical contact to a buried implant layer in diamond. Comparison is made to focused ion beam milling.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3595678DOI Listing

Publication Analysis

Top Keywords

laser ablation
8
buried implant
8
implant layer
8
electrical contact
8
note laser
4
ablation technique
4
technique electrically
4
electrically contacting
4
buried
4
contacting buried
4

Similar Publications

With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.

View Article and Find Full Text PDF

SMILE for correction of myopia in patients during the incipient phase of presbyopia.

Int Ophthalmol

January 2025

Department of Ophthalmology, Peking University Third Hospital, No 49 Huayuan North Road, Haidian District, Beijing, 100191, China.

Purpose: To evaluate clinical outcomes and visual quality 12 months after small incision lenticule extraction (SMILE) for correction of myopia with or without astigmatism in patients during the incipient phase of presbyopia.

Setting: Peking University Third Hospital, Beijing, China.

Design: Retrospective observation study.

View Article and Find Full Text PDF

Background/aims: To identify the risk factors for neuropathic corneal pain (NCP) following corneal refractive surgery and to report its clinical manifestations, imaging and proteomic characteristics.

Methods: This 1 year prospective cohort study included 100 eyes that underwent small incision lenticule extraction (SMILE) or laser-assisted in situ keratomileusis (LASIK). Ocular surface assessments, in-vivo confocal microscopy scans, tear neuromediators and proteomics analyses were performed.

View Article and Find Full Text PDF

Background: Elemental analysis of teeth allows for exposure assessment during critical windows of development and is increasingly used to link early life exposures and health. The measurement of inorganic elements in teeth is challenging; laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is the most widely used technique.

Objective: Both synchrotron x-ray fluorescence (SXRF) and LA-ICP-MS have the capability to measure elemental distributions in teeth with each having distinct advantages and disadvantages.

View Article and Find Full Text PDF

Rationally manipulating molecular planarity to improve molar absorptivity, NIR-II brightness, and photothermal effect for tumor phototheranostics.

Biomaterials

January 2025

Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, China. Electronic address:

The secondary near-infrared region (NIR-II) fluorescence imaging-guided photothermal therapy (PTT) offers a noninvasive and light-controllable treatment option for deep-seated cancers. However, the development of NIR-II photothermal agents (NIR-II PTAs) that possess the desired properties of high molar absorption coefficient (ε), fluorescence quantum yield (QY), and photothermal conversion efficiency (PCE) remain a challenge due to the contradiction between radiative and nonradiative processes. Herein, we propose a novel side-chain heteroatom substitution engineering strategy to simultaneously enhance ε, QY, and PCE by modifying the molecular planarity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!