A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3589859DOI Listing

Publication Analysis

Top Keywords

higher harmonics
20
optical-beat frequency
16
microwave higher
16
measurement optical-beat
8
periodic peaks
8
frequency peak
8
microwave
7
harmonics
7
frequency
6
higher
5

Similar Publications

The integration of large-scale power electronic equipment has intensified harmonic issues in power systems. Accurate harmonic models are fundamental for evaluating and mitigating harmonic problems, but existing models still exhibit deficiencies in harmonic mechanism, model complexity and accuracy. This work proposes a calculation method of crossed frequency admittance matrix (CFAM) analytical model based on piecewise linearization, aiming to achieve accurate modeling of phase-controlled power electronic harmonic sources.

View Article and Find Full Text PDF

Acoustic droplet vaporization (ADV) plays a crucial role in ultrasound-related biomedical applications. While previous models have examined the stages of nucleation, growth, and oscillation in isolation, which may limit their ability to fully describe the entire ADV process. To address this, our study developed an integrated model that unifies these three stages of ADV, stimulated by a continuous nonlinear dual-frequency ultrasound wave.

View Article and Find Full Text PDF

According to the World Health Organization (WHO) musculoskeletal conditions are a leading contributor to disability worldwide. This fact is often somewhat overlooked, since musculoskeletal conditions are less likely to be associated with mortality. Nonetheless, treatments, therapies and management of these conditions are extremely costly to national healthcare systems.

View Article and Find Full Text PDF

Background: Complexity and signal recurrence metrics obtained from body surface potential mapping (BSPM) allow quantifying atrial fibrillation (AF) substrate complexity. This study aims to correlate electrocardiographic imaging (ECGI) detected reentrant patterns with BSPM-calculated signal complexity and recurrence metrics.

Methods: BSPM signals were recorded from 28 AF patients (17 male, 11 women, 62.

View Article and Find Full Text PDF

This article presents an innovative asymmetric multilevel inverter (MLI) topology that outperforms conventional counterparts. The introduced topology presents a breakthrough in implementing power electronics control by maximizing specific levels while minimizing switching components. A cutting-edge control scheme for optimal operation of the cascaded half-bridge MLI is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!