On the basis of the remarkable difference in affinity of graphene (GO) with ssDNA containing a different number of bases in length, we for the first time report a GO-DNAzyme based biosensor for amplified fluorescence "turn-on" detection of Pb(2+). A FAM-labeled DNAzyme-substrate hybrid acted as both a molecular recognition module and signal reporter and GO as a superquencher. By taking advantage of the super fluorescence quenching efficiency of GO, our proposed biosensor exhibits a high sensitivity toward the target with a detection limit of 300 pM for Pb(2+), which is lower than previously reported for catalytic beacons. Moreover, with the choice of a classic Pb(2+)-dependent GR-5 DNAzyme instead of 8-17 DNAzyme as the catalytic unit, the newly designed sensing system also shows an obviously improved selectivity than previously reported methods. Moreover, the sensing system was used for the determination of Pb(2+) in river water samples with satisfying results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac200843x | DOI Listing |
World J Microbiol Biotechnol
January 2025
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China.
Organic acids constitute a vital category of chemical raw materials. They have extensive applications in industries such as polymers, food, and pharmaceuticals. Currently, industrial production predominantly relies on microbial fermentation.
View Article and Find Full Text PDFTalanta
January 2025
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China. Electronic address:
Anal Chim Acta
February 2025
Nanobiophotonics Department, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany. Electronic address:
In recent years, nanozyme-based analytics have become popular. Among these, laccase nanozyme-based colorimetric sensors have emerged as simple and rapid colorimetric detection methods for various analytes, effectively addressing natural enzymes' stability and high-cost limitations. Laccase nanozymes are nanomaterials that exhibit inherent laccase enzyme-like activity.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China. Electronic address:
Background: Pathogenic bacteria are widespread in nature and can cause infections and various complications, thereby posing a severe risk to public health. Therefore, simple, rapid, sensitive, and cost-effective methods must be developed to detect pathogenic bacteria. Biosensors are prominent platforms for detecting pathogenic bacteria owing to their high sensitivity, specificity, repeatability, and stability.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, PR China. Electronic address:
Development of sensitive and cost-effective strategies for detecting influenza viruses is crucial to combat the spread of infectious diseases. In this study, a novel trans-dimensional nanocoral gold foam (NCGF) was fabricated on screen-printed carbon electrodes using hydrogen template electrodeposition method. This unique structure, with interconnected large and small pores, significantly increased the specific surface area and stability of the sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!