Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Symmetric transition metal complexes of 2,4-pentanedione (acetyl acetone) are interfacially active: Spinning drop tensiometry reveals lowering of the interfacial tension at the water-organic interface, most pronounced for [Cr(acac)(3)], [Fe(acac)(3)], [Zr(acac)(4)], and [Hf(acac)(4)]. The interfacial activity is explained by the in situ generation of amphiphilic species. Based on tensiometry and (1)H and diffusion-ordered NMR spectroscopy (DOSY NMR), hydrogen bonding of the organically dissolved complexes with water, in some cases in combination with inner-sphere hydrolytic coordination, is identified as the primary origin of this amphiphilicity. The complexes are a rare example of symmetric molecules that turn amphiphilic only upon interfacial interaction with water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la200836v | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!