Objective: Despite the importance of interleukin-13 (IL-13) in systemic sclerosis (SSc) and other fibrotic diseases, its mechanisms of action are not understood. We have reported that excessive amounts of IL-13 are produced by peripheral blood effector CD8+ T cells from patients with diffuse cutaneous SSc (dcSSc). The aim of the present study was to establish the molecular basis of IL-13 dysregulation in the pathogenesis of SSc.
Methods: Quantitative polymerase chain reaction analysis and intracellular staining were used to study the transcription factors that control naive peripheral blood CD8+ T cell differentiation into type 1 and type 2 cytokine-secreting cells. Intracellular staining revealed that GATA-3 levels in freshly isolated naive CD8+ T cells correlated with specific clinical manifestations. We therefore assessed the effects of GATA-3 inhibition on IL-13 production in CD8+ T cells from the SSc patients.
Results: Freshly isolated naive peripheral blood CD8+ T cells expressed high levels of GATA-3 and failed to down-regulate IL-13 production when cultured under type 1-skewing conditions, but maintained adequate levels of interferon-γ production. Cellular GATA-3 levels were significantly higher in patients with dcSSc and early inflammatory disease. Silencing of GATA-3 with small interfering RNA significantly reduced IL-13 production by CD8+ T cells, demonstrating a causal relationship between GATA-3 and IL-13.
Conclusion: These results provide important new insights into SSc pathogenesis and suggest that increased GATA-3 expression in CD8+ T cells could be a highly relevant biomarker of immune dysfunction in patients with dcSSc. GATA-3 could be a novel therapeutic target for this currently incurable disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.30489 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!