Purpose: The efficacy of chemotherapy is decreased due to over-expression of the drug transporter P-glycoprotein (P-gp). This study was conducted to determine the feasibility of down-regulating tumor P-gp levels with non-viral siRNA delivery in order to sensitize the tumors to drug therapy.
Methods: P-gp over-expressing MDA435/LCC6 MDR1 cells were used to establish xenografts in NOD-SCID mouse. Cationic polymers polyethylenimine (PEI) and stearic acid-substituted poly-L-lysine (PLL-StA) were formulated with P-gp- specific siRNAs and delivered intratumorally to explore the feasibility of P-gp down-regulation in tumors. Intravenous Doxil™ was administered to investigate tumor growth.
Results: PEI and PLL-StA effectively delivered siRNA to MDA435/LCC6 MDR1 cells in vitro to reduce P-gp expression for 3 days. Intratumoral injection of siRNA with the carriers resulted in 60-80% and 20-32% of siRNA retention in tumors after 24 and 96 hr, respectively. This led to ~29.0% and ~61.5% P-gp down-regulation with PEI- and PLL-StA-mediated siRNA delivery, respectively. The P-gp down-regulation by intratumoral siRNA injection led to better response to systemic Doxil™ treatment, resulting in slowed tumor growth in originally doxorubicin-resistant tumors.
Conclusion: Effective P-gp down-regulation was feasible with polymeric siRNA delivery in a xenograft model, resulting in an enhanced response to the drug therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-011-0480-z | DOI Listing |
Zhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Department of Pediatrics, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China.
J Cell Biochem
January 2025
Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India.
Multidrug-resistant (MDR) cancer cells maintain redox homeostasis to eliminate oxidative stress-mediated cell death. This study explores the effects of solasodine on regulating P-glycoprotein (P-gp) expression through the Nrf2/Keap1 signaling pathway and oxidative stress-induced sensitization of drug-resistant cancer cells to chemotherapeutics. Initially, the oxidative stress indicators such as intracellular ROS generation, the levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and gamma-H2AX (γ-H2AX) in the KBChR-8-5 drug-resistant cells were measured.
View Article and Find Full Text PDFBiomater Res
October 2024
Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Acquired resistance to chemotherapy is a major challenge in the treatment of triple-negative breast cancer (TNBC). Despite accumulated evidence showing microRNA-21 (miR-21) as a vital regulator of tumor progression, the role of miR-21 in modulating the multidrug resistance of TNBC remains obscure. In this study, we demonstrate that miR-21 affects chemoresistance in 4T1 TNBC cells in response to doxorubicin (DOX) by regulating the P-glycoprotein (P-gp) drug efflux pump.
View Article and Find Full Text PDFMinerva Obstet Gynecol
December 2024
Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy.
Background: P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are multidrug resistance (MDR) transporters that function as placental gatekeepers, lowering the fetal levels of diverse xenobiotics and toxins that may be circulating in the maternal blood throughout pregnancy. Placenta accreta spectrum (PAS) and the placenta previa (PP) disorders are obstetric pathologies encompassed by an abnormal invasion of chorionic villous tissue in the uterine wall or at the endocervical os, respectively. Given the fact that MDR transporters are involved in placentation and are highly responsive to inflammation, we hypothesized that immunostaining of P-gp and BCRP would be altered in PAS and in PP specimens.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
June 2024
Department of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310003,
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!