Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alveolar macrophages (AM) are crucial for pulmonary host defense, and evidence emerges that ATP-gated P2X receptors are involved in inflammatory processes. This study focuses on the expression and functional characterization of P2X receptors in AM from mouse. In RT-PCR experiments, transcripts encoding the P2X₁, P2X₃, P2X₄, P2X₅, and P2X₇ receptors were detected. In whole-cell patch-clamp recordings, ATP (1 mM) evoked an inward current (mouse and human AM) that was reversible upon washout, and the reversal potential was ~5 mV, indicating the activation of a non-selective conductance-a fingerprint of P2X receptors. Further characterization (mouse AM) revealed that the current was not desensitized by a second ATP application. The ATP-induced current was increased by the removal of extracellular Ca²⁺ (in human and mouse AM), and EC₅₀ in mouse AM were determined with ~1 mM ATP, in the presence as well as in the absence of extracellular Ca²⁺. Pharmacological characterization of mouse AM revealed that the effect was augmented by BzATP and pre-application with ivermectin, but no effect with α,β-meATP was observed. Further, the ATP effect was reduced by PPADS (300 μM), brilliant blue G (5 μM), and about A438079 (10 μM). Although different P2X receptor transcripts were detected in mouse AM, the observed functional and pharmacological characteristics indicate primarily the participation of P2X₄ and P2X₇ receptors as mediators of the ATP-induced ion current in mouse AM. These suggestions were confirmed by experiments with AM from P2X₇ -deficient animals, indicating a contribution of P2X₄ and P2X₇ receptors in pulmonary immune function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-011-0980-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!