AI Article Synopsis

  • Individual differences in how people metabolize substances may impact their risk for complex diseases, making genetic studies relevant.
  • The research focused on gene families related to metabolism (cytochrome P450 and glutathione S-transferase) and involved 115 Euro-descendants and 196 Afro-descendants in Curitiba, Brazil.
  • Findings revealed varying mutation and null genotype frequencies between the two groups for six specific genes, which are important for further understanding genetic susceptibility to diseases.

Article Abstract

Individual variability in xenobiotic metabolism has been associated with susceptibility to developing complex diseases. Genes involved in xenobiotic metabolism have been evaluated in association studies; the difficulty of obtaining accurate gene frequencies in mixed populations makes interpretation of the results difficult. We sought to estimate population parameters for the cytochrome P450 and glutathione S-transferase gene families, thus contributing to studies using these genes as markers. We describe the frequencies of six genes (CYP1A1, CYP2D6, CYP2E1, GSTM1, GSTT1, and GSTP1) and estimate population parameters in 115 Euro-descendants and 196 Afro-descendants from Curitiba, South of Brazil. PCR-based methods were used for genotyping, and statistical analysis were performed by AMOVA with ARLEQUIN software. The mutant allele frequencies in the Afro-descendants and Euro-descendants, respectively, were: CYP1A1*2A = 30.1% and 15.2%; CYP2D6*4 = 14.5% and 21.5%; CYP2E1*5B = 7.9% and 5%; GSTP1*B = 37.8% and 28.3%. The null genotype frequencies were: GSTM1*0 = 36.8% and 46.1%; GSTT1*0 = 24.2% and 17.4%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3036891PMC
http://dx.doi.org/10.1590/S1415-47572009005000087DOI Listing

Publication Analysis

Top Keywords

xenobiotic metabolism
8
estimate population
8
population parameters
8
population analysis
4
analysis xenobiotic
4
xenobiotic metabolizing
4
genes
4
metabolizing genes
4
genes south
4
south brazilian
4

Similar Publications

The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining.

View Article and Find Full Text PDF

Uncovering the Metabolic Footprint of New Psychoactive Substances by Metabolomics: A Systematic Review.

Molecules

January 2025

Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

New psychoactive substances (NPSs) emerged in the 2000s as legal alternatives to illicit drugs and quickly became a huge public health threat due to their easy accessibility online, limited information, and misleading labels. Synthetic cannabinoids and synthetic cathinones are the most reported groups of NPSs. Despite NPSs being widely studied, due to their structural diversity and the constant emergence of novel compounds with unknown properties, the development of new techniques is required to clarify their mode of action and evaluate their toxicological effects.

View Article and Find Full Text PDF

Although bioremediation is considered the most environmentally friendly and sustainable technique for remediating contaminated soil and water, it is most effective when combined with physicochemical methods, which allow for the preliminary removal of large quantities of pollutants. This allows microorganisms to efficiently eliminate the remaining contaminants. In addition to requiring the necessary genes and degradation pathways for specific substrates, as well as tolerance to adverse environmental conditions, microorganisms may perform below expectations.

View Article and Find Full Text PDF

Cooperation Between and for Carbendazim Degradation.

Microorganisms

December 2024

Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico.

Carbendazim (CBZ) is a fungicide widely used on different crops, including soybeans, cereals, cotton, tobacco, peanuts, and sugar beet. Excessive use of this xenobiotic causes environmental deterioration and affects human health. Microbial metabolism is one of the most efficient ways of carbendazim elimination.

View Article and Find Full Text PDF

Glutathione S-transferases (GSTs) are promising pharmacological targets for developing antiparasitic agents against helminths, as they play a key role in detoxifying cytotoxic xenobiotics and managing oxidative stress. Inhibiting GST activity can compromise parasite viability. This study reports the successful identification of two selective inhibitors for the mu-class glutathione S-transferase of 25 kDa (Ts25GST) from , named and , using a computationally guided approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!