Bio-based succinate is still a matter of special emphasis in biotechnology and adjacent research areas. The vast majority of natural and engineered producers are bacterial strains that accumulate succinate under anaerobic conditions. Recently, we succeeded in obtaining an aerobic yeast strain capable of producing succinic acid at low pH. Herein, we discuss some difficulties and advantages of microbial pathways producing "succinic acid" rather than "succinate." It was concluded that the peculiar properties of the constructed yeast strain could be clarified in view of a distorted energy balance. There is evidence that in an acidic environment, the majority of the cellular energy available as ATP will be spent for proton and anion efflux. The decreased ATP:ADP ratio could essentially reduce the growth rate or even completely inhibit growth. In the same way, the preference of this elaborated strain for certain carbon sources could be explained in terms of energy balance. Nevertheless, the opportunity to exclude alkali and mineral acid waste from microbial succinate production seems environmentally friendly and cost-effective.

Download full-text PDF

Source
http://dx.doi.org/10.4161/bbug.2.2.14433DOI Listing

Publication Analysis

Top Keywords

succinic acid
8
acid low
8
yeast strain
8
energy balance
8
produce succinic
4
low ph?
4
ph? bio-based
4
bio-based succinate
4
succinate matter
4
matter special
4

Similar Publications

Alkaline salts have more severe adverse effects on plant growth and development than neutral salts do. However, the adaptive mechanisms of plants to alkaline salt stress remain poorly understood, especially at the molecular level. The Songnen Plain in northeast China is composed of typical 'soda' saline-alkali soil, with NaHCO and NaCO as the predominant alkaline salts (pH ≥ 9.

View Article and Find Full Text PDF

The genus Euphorbia, belonging to the family Euphorbiaceae, represents a significant ethnobotanical heritage due to the diverse bioactive properties exhibited. In this study, the phytochemical composition and biological activities of latex and aerial parts of the water extract of Euphorbia gaillardotii were investigated. Phytochemical analyses were performed using gas chromatography-mass spectrometry and high-performance liquid chromatography techniques and total antioxidants, phenolics, sugars, organic acids, and aroma components were quantitatively determined.

View Article and Find Full Text PDF

Background: Burn-hemorrhagic shock combined injury, a severe condition causing complex stress responses and metabolic disturbances that significantly affect clinical outcomes in both military and civilian settings, was modeled in swine to investigate the associated metabolomic and proteomic changes and identify potential biomarkers for disease prognosis.

Methods: Eight clean-grade adult male Landrace pigs (4-5 months, average weight 60-70 kg) were used to model burn-hemorrhagic shock combined injury. Serum samples collected at 0 h and 2 h post-injury were analyzed using metabolomic and proteomic measurements.

View Article and Find Full Text PDF

Construction of an Efficient -Succinyl--homoserine Producing Cell Factory and Its Application for Coupling Production of -Methionine and Succinic Acid.

J Agric Food Chem

January 2025

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

-Succinyl--homoserine (OSH) is an important C4 platform compound with broad applications. Its green and efficient production is receiving increasing attention. Herein, the OSH producing chassic cell was constructed by deleting the transcriptional negative regulation factor, blocking the OSH consumption pathway, and inhibiting the competitive bypass pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!