Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although the chloroplast genome contains many noncoding regions, relatively few have been exploited for interspecific phylogenetic and intraspecific phylogeographic studies. In our recent evaluation of the phylogenetic utility of 21 noncoding chloroplast regions, we found the most widely used noncoding regions are among the least variable, but the more variable regions have rarely been employed. That study led us to conclude that there may be unexplored regions of the chloroplast genome that have even higher relative levels of variability. To explore the potential variability of previously unexplored regions, we compared three pairs of single-copy chloroplast genome sequences in three disparate angiosperm lineages: Atropa vs. Nicotiana (asterids); Lotus vs. Medicago (rosids); and Saccharum vs. Oryza (monocots). These three separate sequence alignments highlighted 13 mutational hotspots that may be more variable than the best regions of our former study. These 13 regions were then selected for a more detailed analysis. Here we show that nine of these newly explored regions (rpl32-trnL((UAG)), trnQ((UUG))-5'rps16, 3'trnV((UAC))-ndhC, ndhF-rpl32, psbD-trnT((GGU)), psbJ-petA, 3'rps16-5'trnK((UUU)), atpI-atpH, and petL-psbE) offer levels of variation better than the best regions identified in our earlier study and are therefore likely to be the best choices for molecular studies at low taxonomic levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3732/ajb.94.3.275 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!