Vascular plants have evolved shoot apical meristems (SAMs), whose structures differ among plant groups. To clarify the evolutionary course of the different structural types of SAMs, we compared plasmodesmatal networks in the SAMs for 17 families and 24 species of angiosperms, gymnosperms, and pteridophytes, using transmission electron microscopy (TEM). The plasmodesmata (PD) in almost all cell walls in median longitudinal sections of SAMs were counted, and the PD density per unit area was calculated for each cell wall. Angiosperm and gymnosperm SAMs have low densities, with no difference between stratified (tunica-corpus) and unstratified structures. SAMs of ferns, including Psilotum and Equisetum, have average densities that are more than three times higher than those of seed plants. Interestingly, microphyllous lycopods have both the fern and seed-plant types of PD networks; Selaginellaceae SAMs with single apical cells have high PD densities, while SAMs of Lycopodiaceae and Isoetaceae with plural initial cells have low PD densities, equivalent to those of seed plants. In summary, PD networks are strongly correlated to SAM organizations-SAMs with single and plural initial cells have the fern and seed-plant types of PD, respectively. The two SAM organizations may have evolved separately in lycophytes and euphyllophytes and may be associated with gain or loss of the ability to form secondary PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3732/ajb.94.12.1911 | DOI Listing |
Plant Cell Rep
January 2025
Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.
We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Plant epigenomics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
J Exp Bot
January 2025
Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India.
Saffron ( L.), a perennial geophyte from the Iridaceae family, blooms in autumn and thrives in Mediterranean-like climates. It is highly valued for its therapeutic and commercial uses.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Academy of Agricultural and Forestry Sciences of Qinghai University, Xining 810016, China.
The determinate inflorescence trait of L. is associated with various desirable agricultural characteristics. ( and ), which encode the transcription factor have previously been identified as candidate genes controlling this trait through map-based cloning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!