Endogenous peptide elicitors in higher plants.

Curr Opin Plant Biol

Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido, University, Sapporo 060-8589, Japan.

Published: August 2011

Plant defense responses against invading organisms are initiated through the perception of molecules associated with attacking microbes and herbivores by pattern recognition receptors. In addition to elicitor molecules derived from attacking organisms, plants recognize host-derived molecules. These endogenous elicitors induce and amplify the defense responses against invading organisms both locally and systemically. Several classes of plant-derived molecules elicit defense, including cell wall fragments and peptides. Endogenous peptide elicitors have been discovered in species across the plant kingdom, and their role regulating immunity to both herbivores and pathogens is becoming increasingly appreciated. In this review, we will focus on the five known endogenous peptide elicitor families, summarize their properties, and discuss research goals to further understanding of plant innate immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbi.2011.05.001DOI Listing

Publication Analysis

Top Keywords

endogenous peptide
12
peptide elicitors
8
defense responses
8
responses invading
8
invading organisms
8
endogenous
4
elicitors higher
4
higher plants
4
plants plant
4
plant defense
4

Similar Publications

Sacubitril/valsartan, an angiotensin receptor neprilysin inhibitor (ARNI), is becoming more common in the treatment of heart failure and hypertension. Neprilysin is highly expressed in the renal tubules, and reports have shown increases in urinary C-peptide reactivity (CPR) levels after administration of ARNI. However, the effect of ARNI on serum CPR levels, a critical marker of insulin secretion in diabetes, remains underexplored.

View Article and Find Full Text PDF

Introduction: Type 1 diabetes is often accompanied by autoimmune thyroid disease. We aimed to investigate the clinical characteristics of Japanese patients with acute-onset type 1 diabetes and thyroid autoantibodies, focusing on decreased endogenous insulin secretion.

Materials And Methods: We examined 80 patients with acute-onset type 1 diabetes, classifying them into two groups with and without thyroid autoantibodies and compared the clinical characteristics of the two groups.

View Article and Find Full Text PDF

The measurement, regulation and biological activity of FAHFAs.

Nat Chem Biol

January 2025

Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA.

Fatty acid esters of hydroxy fatty acids (FAHFAs) are bioactive lipids that are positively correlated with metabolic health in humans and mice. Since their discovery, understanding the role and regulation of FAHFAs has been a prime focus of research into these lipids. In this Review, we describe how FAHFAs are quantitatively measured from biological samples.

View Article and Find Full Text PDF

Background: Acute pancreatitis (AP) presents a significant clinical challenge with limited therapeutic options. The complex etiology and pathophysiology of AP emphasize the need for innovative treatments. This study explores mRNA-based therapies delivering fibroblast growth factor 21 (FGF21) and apolipoprotein A1 (APOA1), alone and in combination, for treating experimental AP.

View Article and Find Full Text PDF

Advances in the therapeutic potentials of ligands of the apelin receptor APJ.

Eur J Pharmacol

January 2025

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands. Electronic address:

Angiotensin II protein J receptor, APJ, is a type A G protein coupled receptor. Endogenous apelin and elabela peptides stimulate APJ via distinct signalling profiles. A complex signalling map of elabela-stimulated APJ was published in 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!