Investigating incorporation and distribution of radionuclides in trinitite.

J Environ Radioact

European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe, Germany.

Published: September 2011

Most of the surface explosions in nuclear tests have released radioactivity to the environment in the form of bulk glassy materials originating from the melting of sandy soil in the neighbourhood of ground zero. In view of clarifying issues concerning the mechanism of formation and the radiological impact of these materials, we investigated incorporation and volume distribution of radionuclides in a typical fragment of trinitite, the glassy substance generated following the first nuclear test (Trinity Site, New Mexico, 1945). Specific activities were determined by γ-spectrometry for the most significant fission and activation products. In particular, (152)Eu activity was used to estimate the original point of collection of the sample with respect to ground zero. After embedding in an epoxy resin, the sample was then sliced to perform cross-sectional β- and α-autoradiograph. α-spectrometry was also carried out on a fine powder obtained by surface abrasion. In the β-autoradiography, hot spots were distinguishable in the proximity of the blast side, over a 1000 times less intense background of sand activation products. Also α-contamination (from (239+240)Pu and (241)Am) was mostly concentrated within the superficial layer, in a fraction of only 20% of the overall volume of the sample, exhibiting a discontinuous, droplet-like distribution. This evidence would partially support a recent hypothesis on trinitite formation according to which most of the glass layer was formed not on the ground but by a rain of material injected into the fireball that melted, fell back, and collected on a bed of already fused sand.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2011.05.003DOI Listing

Publication Analysis

Top Keywords

distribution radionuclides
8
activation products
8
investigating incorporation
4
incorporation distribution
4
radionuclides trinitite
4
trinitite surface
4
surface explosions
4
explosions nuclear
4
nuclear tests
4
tests released
4

Similar Publications

This study concerns the U/U ratios in environmental samples collected in the Pamir region (Central Asia). Cryoconite (a supra-glacial sediment), soil and river water were sampled in the Muztagh Ata Glacier Basin, a secondary basin belonging to Gaizi River watershed. The aim of the research is to assess the impact of anthropic nuclear activities in such a remote area, being the U/U ratio highly sensitive to anthropogenic disturbances.

View Article and Find Full Text PDF

Targeting mutant p53: Evaluation of novel anti-p53 monoclonal antibodies as diagnostic tools.

Sci Rep

January 2025

Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.

About 50% of all cancers carry a mutation in p53 that impairs its tumor suppressor function. The p53 missense mutation p53 (p53 in mice) is a hotspot mutation in various cancer types. Therefore, monoclonal antibodies selectively targeting clinically relevant mutations like p53 could prove immensely value.

View Article and Find Full Text PDF

Ionizing radiation emitted from radionuclides is present everywhere in the environment. It is the main source of health hazards to the general public. The present study elaborates on the analysis of primordial radionuclides in the collected soil samples from the Main Central Thrust (MCT) region of Uttarakhand Himalaya in a grid pattern.

View Article and Find Full Text PDF

Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof of principle, we tested whether this strategy of radionuclide-induced drug engagement for release (RAiDER) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing off-target exposure to activated chemotherapy.

View Article and Find Full Text PDF

The treatment regimen for [Lu]Lu-prostate-specific membrane antigen (PSMA) 617 therapy follows that of chemotherapy: 6 administrations of a fixed activity, each separated by 6 wk. Mathematic modeling can be used to test the hypothesis that the current treatment regimen for a radiopharmaceutical modality is suboptimal. A mathematic model was developed to describe tumor growth during [Lu]Lu-PSMA therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!