Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes.

Biochem J

Forest Products Laboratory, USDA Forest Service, Madison, WI 53705.

Published: June 1990

Lignin peroxidase oxidizes non-phenolic substrates by one electron to give aryl-cation-radical intermediates, which react further to give a variety of products. The present study investigated the possibility that other peroxidative and oxidative enzymes known to catalyse one-electron oxidations may also oxidize non-phenolics to cation-radical intermediates and that this ability is related to the redox potential of the substrate. Lignin peroxidase from the fungus Phanerochaete chrysosporium, horseradish peroxidase (HRP) and laccase from the fungus Trametes versicolor were chosen for investigation with methoxybenzenes as a homologous series of substrates. The twelve methoxybenzene congeners have known half-wave potentials that differ by as much as approximately 1 V. Lignin peroxidase oxidized the ten with the lowest half-wave potentials, whereas HRP oxidized the four lowest and laccase oxidized only 1,2,4,5-tetramethoxybenzene, the lowest. E.s.r. spectroscopy showed that this congener is oxidized to its cation radical by all three enzymes. Oxidation in each case gave the same products: 2,5-dimethoxy-p-benzoquinone and 4,5-dimethoxy-o-benzoquinone, in a 4:1 ratio, plus 2 mol of methanol for each 1 mol of substrate. Using HRP-catalysed oxidation, we showed that the quinone oxygen atoms are derived from water. We conclude that the three enzymes affect their substrates similarly, and that whether an aromatic compound is a substrate depends in large part on its redox potential. Furthermore, oxidized lignin peroxidase is clearly a stronger oxidant than oxidized HRP or laccase. Determination of the enzyme kinetic parameters for the methoxybenzene oxidations demonstrated further differences among the enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1131457PMC
http://dx.doi.org/10.1042/bj2680475DOI Listing

Publication Analysis

Top Keywords

lignin peroxidase
20
horseradish peroxidase
8
redox potential
8
hrp laccase
8
half-wave potentials
8
three enzymes
8
peroxidase
7
oxidized
6
comparison lignin
4
peroxidase horseradish
4

Similar Publications

Studies on the treatment of anaerobically digested sludge by white-rot fungi: evaluation of the effect of Phanerochaete chrysosporium and Trametes versicolor.

Microb Cell Fact

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.

Background: The composition of anaerobically digested sludge is inherently complex, enriched with structurally complex organic compounds and nitrogenous constituents, which are refractory to biodegradation. These characteristics limit the subsequent rational utilization of resources from anaerobically digested sludge. White-rot fungi (WRF) have garnered significant research interest due to their exceptional capacity to degrade complex and recalcitrant organic pollutants.

View Article and Find Full Text PDF

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

In silico analysis and gene expression patterns of lignin peroxidase isozymes in Phanerochaete chrysosporium.

Int J Biol Macromol

January 2025

Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India. Electronic address:

Phanerochaete chrysosporium (Pc), is a prominent lignin-degrading fungus which serves as an important source for lignin-degrading enzymes (LDEs). The present study was focused on a detailed in silico analysis and gene expression patterns of lignin peroxidases (PcLiPs), which is a significant class of LDEs. In spite of extensive research on P.

View Article and Find Full Text PDF

Azo dye wastewater has garnered significant attention from researchers because of its association with high-temperature, high-salt, and high-alkali conditions. In this study, consortium ZZ efficiently decolorized brown D3G under halophilic and thermophilic conditions. he results indicated that consortium ZZ, which was mainly dominated by Marinobacter, Bacillus, and Halomonas, was achieved decolorization rates ranging from 1 to 10% at temperatures between 40 °C and 50 °C, while maintaining a pH range of 7 to 10 for direct brown D3G degradation.

View Article and Find Full Text PDF

Metabolic mechanism of lignin-derived aromatics in white-rot fungi.

Appl Microbiol Biotechnol

December 2024

Graduate School of Agriculture, Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan.

Article Synopsis
  • White-rot fungi, like Phanerochaete chrysosporium, are essential for breaking down lignocellulosic biomass, which includes important components like cellulose, hemicellulose, and lignin, thus contributing to the carbon cycle.
  • These fungi use various enzymes—such as lignin peroxidases and cytochrome P450 monooxygenases—to degrade lignin and its derivatives, though more research is needed to fully understand the metabolic pathways involved.
  • The metabolic flexibility of these fungi allows them to adapt their enzyme production, specifically through the interplay of key pathways, enhancing their efficiency in degrading lignin for potential biotechnological applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!