Controlled release of DNA from poly(vinylpyrrolidone) capsules using cleavable linkers.

Biomaterials

Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.

Published: September 2011

AI Article Synopsis

  • The study focuses on developing polymer carriers designed for effective drug and gene delivery through controlled degradation and cargo release.
  • Researchers created low-fouling PVPON capsules using hydrogen bonding and covalent cross-linking, optimizing their assembly conditions based on pH and ionic strength.
  • The findings indicated that capsules stabilized with PEG₈ had better encapsulation and slower degradation rates, highlighting their potential for targeted therapeutic applications.

Article Abstract

The design of polymer carriers with tunable degradation and cargo release is fundamental for applications in drug and gene delivery. In this study, we report low-fouling poly(N-vinyl pyrrolidone) (PVPON) capsules assembled via hydrogen bonding and stabilized using covalent cross-linking. We first investigated the effects of pH and ionic strength to optimize the assembly conditions. A model therapeutic cargo (plasmid DNA) was then loaded in the capsules and used for encapsulation and release studies. Two bisazide cross-linkers that contain a disulfide bond, termed PEG₈ (poly(ethylene glycol)) and PEG(16), were employed to stabilize the multilayer films, and used to tune the degradation and cargo release behavior of the capsules in simulated cytoplasmic conditions. The results suggest that PEG₈-stabilized capsules were more efficiently cross-linked, and hence displayed higher plasmid encapsulation. Consequently, the capsules cross-linked with PEG₈ also showed a two-fold reduction in degradation rate. This ability to achieve controlled carrier degradation and cargo release makes these capsules of potential interest for drug and gene delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2011.05.011DOI Listing

Publication Analysis

Top Keywords

degradation cargo
12
cargo release
12
drug gene
8
gene delivery
8
capsules
7
controlled release
4
release dna
4
dna polyvinylpyrrolidone
4
polyvinylpyrrolidone capsules
4
capsules cleavable
4

Similar Publications

The vast majority of breast cancer patients require radiotherapy but some of them will develop local recurrences and potentially metastases in the future. Recent data show that exosomal cargo is essential in these processes. Thus, we investigated the influence of ionising radiation on exosome properties and their ability to modify the sensitivity and biology of non-irradiated cells.

View Article and Find Full Text PDF

Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies.

Int J Mol Sci

December 2024

Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain.

Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites.

View Article and Find Full Text PDF

Sepsis is a risk factor associated with increasing neonatal morbidity and mortality, acute lung injury, and chronic lung disease. While stem cell therapy has shown promise in alleviating acute lung injury, its effects are primarily exerted through paracrine mechanisms rather than local engraftment. Accumulating evidence suggests that these paracrine effects are mediated by mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs), which play a critical role in immune system modulation and tissue regeneration.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake.

View Article and Find Full Text PDF

Viral vector delivery of gene therapy represents a promising approach for the treatment of numerous retinal diseases. Adeno-associated viral vectors (AAV) constitute the primary gene delivery platform; however, their limited cargo capacity restricts the delivery of several clinically relevant retinal genes. In this study, we explore the feasibility of employing high-capacity adenoviral vectors (HC-AdVs) as alternative delivery vehicles, which, with a capacity of up to 36 kb, can potentially accommodate all known retinal gene coding sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!