Exploring the Structure-Function Loop Adaptability of a (β/α)(8)-Barrel Enzyme through Loop Swapping and Hinge Variability.

J Mol Biol

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, C.P. 62210, México.

Published: August 2011

AI Article Synopsis

  • The study explores how proteins evolve, particularly focusing on changes in loop regions that are crucial for their function and adaptation.
  • The researchers developed a technique called loop swapping to mimic natural variability in enzymes, using overlap PCR to introduce diversity in specific protein segments.
  • The findings suggest that this new strategy not only helps in creating functional enzyme variants but also enhances our understanding of the evolutionary mechanisms behind protein function.

Article Abstract

Evolution of proteins involves sequence changes that are frequently localized at loop regions, revealing their important role in natural evolution. However, the development of strategies to understand and imitate such events constitutes a challenge to design novel enzymes in the laboratory. In this study, we show how to adapt loop swapping as semiautonomous units of functional groups in an enzyme with the (β/α)(8)-barrel and how this functional adaptation can be measured in vivo. To mimic the natural mechanism providing loop variability in antibodies, we developed an overlap PCR strategy. This includes introduction of sequence diversity at two hinge residues, which connect the new loops with the rest of the protein scaffold, and we demonstrate that this is necessary for a successful exploration of functional sequence space. This design allowed us to explore the sequence requirements to functional adaptation of each loop replacement that may not be sampled otherwise. Libraries generated following this strategy were evaluated in terms of their folding competence and their functional proficiency, an observation that was formalized as a Structure-Function Loop Adaptability value. Molecular details about the function and structure of some variants were obtained by enzyme kinetics and circular dichroism. This strategy yields functional variants that retain the original activity at higher frequencies, suggesting a new strategy for protein engineering that incorporates a more divergent sequence exploration beyond that limited to point mutations. We discuss how this approach may provide insights into the mechanism of enzyme evolution and function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2011.05.027DOI Listing

Publication Analysis

Top Keywords

structure-function loop
8
loop adaptability
8
loop swapping
8
functional adaptation
8
loop
7
functional
6
sequence
5
exploring structure-function
4
adaptability β/α8-barrel
4
enzyme
4

Similar Publications

Human astroviruses (HAstVs) are a leading cause of viral childhood diarrhea that infects nearly every individual during their lifetime. Although human astroviruses are highly prevalent, no approved vaccine currently exists. Antibody responses appear to play an important role in protection from HAstV infection; however, knowledge about the neutralizing epitope landscape is lacking, as only three neutralizing antibody epitopes have previously been determined.

View Article and Find Full Text PDF

SEM-2/SoxC regulates multiple aspects of C. elegans postembryonic mesoderm development.

PLoS Genet

January 2025

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.

Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. C.

View Article and Find Full Text PDF

Intron removal during pre-mRNA splicing is of extraordinary complexity and its disruption causes a vast number of genetic diseases in humans. While key steps of the canonical spliceosome cycle have been revealed by combined structure-function analyses, structural information on an aberrant spliceosome committed to premature disassembly is not available. Here, we report two cryo-electron microscopy structures of post-B spliceosome intermediates from Schizosaccharomyces pombe primed for disassembly.

View Article and Find Full Text PDF

In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.

View Article and Find Full Text PDF

High hydrostatic pressure promotes gene transcription via a cystathionine-β-synthase domain-containing protein in the hyperthermophilic archaeon Pyrococcus yayanosii.

Nucleic Acids Res

January 2025

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.

Cystathionine-β-synthase (CBS) domains are ubiquitously prevalent in all kingdoms of life. Remarkably, in archaea, proteins consisting of solely CBS domains are widespread. However, the biological functions of CBS proteins in archaea are still unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!