There is mounting evidence that language comprehension involves the activation of mental imagery of the content of utterances (Barsalou, 1999; Bergen, Chang, & Narayan, 2004; Bergen, Narayan, & Feldman, 2003; Narayan, Bergen, & Weinberg, 2004; Richardson, Spivey, McRae, & Barsalou, 2003; Stanfield & Zwaan, 2001; Zwaan, Stanfield, & Yaxley, 2002). This imagery can have motor or perceptual content. Three main questions about the process remain under-explored, however. First, are lexical associations with perception or motion sufficient to yield mental simulation, or is the integration of lexical semantics into larger structures, like sentences, necessary? Second, what linguistic elements (e.g., verbs, nouns, etc.) trigger mental simulations? Third, how detailed are the visual simulations that are performed? A series of behavioral experiments address these questions, using a visual object categorization task to investigate whether up- or down-related language selectively interferes with visual processing in the same part of the visual field (following Richardson et al., 2003). The results demonstrate that either subject nouns or main verbs can trigger visual imagery, but only when used in literal sentences about real space-metaphorical language does not yield significant effects-which implies that it is the comprehension of the sentence as a whole and not simply lexical associations that yields imagery effects. These studies also show that the evoked imagery contains detail as to the part of the visual field where the described scene would take place.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03640210701530748 | DOI Listing |
Vision (Basel)
January 2025
Centre for the Study of Perceptual Experience, Department of Philosophy, University of Glasgow, Glasgow G12 8QQ, UK.
Mental imagery is claimed to underlie a host of abilities, such as episodic memory, working memory, and decision-making. A popular view holds that mental imagery relies on the perceptual system and that it can be said to be 'vision in reverse'. Whereas vision exploits the bottom-up neural pathways of the visual system, mental imagery exploits the top-down neural pathways.
View Article and Find Full Text PDFPsychophysiology
January 2025
Department of Psychology, University of Bonn, Bonn, Germany.
Imaginal exposure is a standard procedure of cognitive behavioral therapy for the treatment of anxiety and panic disorders. It is often used when in vivo exposure is not possible, too stressful for patients, or would be too expensive. The Bio-Informational Theory implies that imaginal exposure is effective because of the perceptual proximity of mental imagery to real events, whereas empirical findings suggest that propositional thought of fear stimuli (i.
View Article and Find Full Text PDFSurg Pract Sci
September 2024
Department of Nursing, School of Nursing and Midwifery, Urmia University of Medical Sciences, Urmia, Iran.
Objective: Guided imagery is a relaxation technique that uses mental visualization to help individuals relax and focus their minds. This systematic review examines the effect of guided imagery on perioperative anxiety in hospitalized adult patients. The aim is to provide a comprehensive analysis of the existing evidence on the efficacy of guided imagery as an intervention for reducing perioperative anxiety.
View Article and Find Full Text PDFData Brief
February 2025
Agricultural Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Ft. Pierce, FL, USA.
The data are aerial images and ground tree measurement data of 3 citrus rootstock trials. Developing new citrus rootstock varieties requires field trials to test to identify selections with improved horticultural performance. A bud from a scion variety is grafted onto the rootstock and grown in a nursery until the grafted plant is ready to be planted in the field, which is in about one year.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Shenyang Bluewisdom Technology Co., Ltd., Shenyang, Liaoning Province 110623, China.
Existing lower limb exoskeletons (LLEs) have demonstrated a lack of sufficient patient involvement during rehabilitation training. To address this issue and better incorporate the patient's motion intentions, this paper proposes an online brain-computer interface (BCI) system for LLE based motor imagery and stacked ensemble. The establishment of this online BCI system enables a comprehensive closed-loop control process, which includes the collection and decoding of brain signals, robotic control, and real-time feedback mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!