Approaches to the simulation of unconfined flow and perched groundwater flow in MODFLOW.

Ground Water

S. S. Papadopulos and Associates, 7944 Wisconsin Ave., Bethesda, MD 20814, USA.

Published: June 2012

Various approaches have been proposed to manage the nonlinearities associated with the unconfined flow equation and to simulate perched groundwater conditions using the MODFLOW family of codes. The approaches comprise a variety of numerical techniques to prevent dry cells from becoming inactive and to achieve a stable solution focused on formulations of the unconfined, partially-saturated, groundwater flow equation. Keeping dry cells active avoids a discontinuous head solution which in turn improves the effectiveness of parameter estimation software that relies on continuous derivatives. Most approaches implement an upstream weighting of intercell conductance and Newton-Raphson linearization to obtain robust convergence. In this study, several published approaches were implemented in a stepwise manner into MODFLOW for comparative analysis. First, a comparative analysis of the methods is presented using synthetic examples that create convergence issues or difficulty in handling perched conditions with the more common dry-cell simulation capabilities of MODFLOW. Next, a field-scale three-dimensional simulation is presented to examine the stability and performance of the discussed approaches in larger, practical, simulation settings.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1745-6584.2011.00829.xDOI Listing

Publication Analysis

Top Keywords

unconfined flow
8
perched groundwater
8
groundwater flow
8
flow equation
8
dry cells
8
comparative analysis
8
approaches
6
approaches simulation
4
simulation unconfined
4
flow
4

Similar Publications

The utilization of natural waste gravel soil as base course material contributes to environmental protection and carbon emission reduction. The purpose of this research is to establish a new model for automated gradation design of the composite soil stabilizer-stabilized waste gravel soil (CSSWGS). A gradation range of CSSWGS has been proposed.

View Article and Find Full Text PDF

Source protection zone delineation has evolved over the past decades from fixed radius or analytical and numerical methods which do not consider uncertainty, to more complex stochastic numerical approaches. In this paper we explore options for delineating a source protection zone, while considering the inherent uncertainty involved in characterizing hydraulic conductivity. We consider a representative pumping well in an unconfined alluvial aquifer under steady-state flow conditions, with the hydraulic conductivity distribution inferred from borehole lithology data in the West Melton area near Christchurch, New Zealand.

View Article and Find Full Text PDF

The extraction of mining resources, as well as processing processes such as ore beneficiation and smelting, generate large amounts of tailings that are difficult to directly utilize. Meanwhile, substantial filling materials are required for the voids formed after mining operations, and the environmental issues and safety hazards brought on by massive solid waste disposal cannot be ignored. By utilizing solid waste with alkaline and pozzolanic activity as the binder component and gold tailings as filler aggregate to prepare filler material to fill up the void areas, the purpose of waste treatment can be achieved.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) pollution in groundwater is a significant global concern. In this study, 26 groundwater samples were collected from the unconfined aquifers in Huazhou District, northwestern China, to assess their distribution characteristics, influencing factors, and ecological risks across various geomorphological settings. The findings revealed 35 VOCs in collected groundwater samples, with aromatic hydrocarbons having the highest detection rate (100%), and the VOCs distribution exhibited significant spatial variations, with the highest VOCs concentration near a chemical plant on the inclined pluvial plain.

View Article and Find Full Text PDF
Article Synopsis
  • Horizontal wells are increasingly favored over traditional vertical wells for exploring and remediating water resources due to cost effectiveness and technical advantages.
  • This study develops analytical solutions describing how water flows toward a horizontal well in a specific aquifer-aquitard system influenced by a stream, considering factors like aquifer storage and stream depletion.
  • The research shows that the water budget components effectively balance out the impacts of pumping, particularly influenced by the distance from the well to the stream and the properties of the leaky aquifer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!