The dissociative adsorption of cyclopentadiene (C(5)H(6)) on Cu(111) yields a cyclopentadienyl (Cp) species with strongly anionic characteristics. The Cp potential energy surface and frictional coupling to the substrate are determined from measurements of dynamics of the molecule together with density functional calculations. The molecule is shown to occupy degenerate threefold adsorption sites and molecular motion is characterized by a low diffusional energy barrier of 40±3 meV with strong frictional dissipation. Repulsive dipole-dipole interactions are not detected despite charge transfer from substrate to adsorbate.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.106.186101DOI Listing

Publication Analysis

Top Keywords

weak intermolecular
4
intermolecular interactions
4
interactions ionically
4
ionically bound
4
bound molecular
4
molecular adsorbate
4
adsorbate cyclopentadienyl/cu111
4
cyclopentadienyl/cu111 dissociative
4
dissociative adsorption
4
adsorption cyclopentadiene
4

Similar Publications

The title compounds, CHO ( and ), are tetra-cyclic benzoates composed of a taxane ring with a fused dioxolane ring as the core skeleton. In compound , the five-membered dioxolane ring is essentially planar while the two cyclo-hexane rings and the cyclo-octane ring adopt chair and chair-chair forms, respectively, and there are three intra-molecular H⋯H short contacts. The corresponding ring conformations in are similar; however, one intra-molecular C-H⋯O inter-action and two H⋯H short contacts are observed, and the benzoyl and meth-oxy-methyl groups show orientational disorder.

View Article and Find Full Text PDF

Exploring the Interactions Between RHAU Peptide and G-Quadruplex Dimers Based on Chromatographic Retention Behaviors.

Molecules

December 2024

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.

G-quadruplex (G4), an important secondary structure of nucleic acids, is polymorphic in structure. G4 monomers can associate with each other to form multimers, which show better application performance than monomers in some aspects. G4 dimers, the simplest and most widespread multimeric structures, are often used as a representative for studying multimers.

View Article and Find Full Text PDF

A Moldable, Tough Mineral-Dominated Nanocomposite as a Recyclable Structural Material.

Small

January 2025

School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China.

Flexible hybrid minerals, primarily composed of inorganic ionic crystal nanolines and a small amount of organic molecules, have significant potential for the development of sustainable structural materials. However, the weak interactions and insufficient crosslinking among the inorganic nanolines limit the mechanical enhancement and application of these hybrid minerals in high-strength structural materials. Inspired by tough biominerals and modern reinforced concrete structures, this study proposes introducing an aramid nanofiber (ANF) network as a flexible framework during the polymerization of calcium phosphate oligomers (CPO), crosslinked by polyvinyl alcohol (PVA) and sodium alginate (SA).

View Article and Find Full Text PDF

Chlorhexidine-loaded microneedles for treatment of oral diseases.

Int J Pharm

December 2024

Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel. Electronic address:

Chlorhexidine (CHX) is a gold standard therapeutic agent against clinical oral pathogens. However, its oral use is limited due to unpleasant taste, alteration in taste buds, staining of teeth and mucous membranes. Therefore, CHX-loaded PLGA microneedles (MNs) were fabricated for local and controlled release in the oral cavity, using a casting mold method.

View Article and Find Full Text PDF

Precise Supramolecular Nanoarchitectonics for Simultaneous Enhanced Photoluminescence and Photocatalysis in a Co-Assembly by a Biomimetic Isolation-Conduction Strategy.

Angew Chem Int Ed Engl

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

Limited by the two mutually exclusive physicochemical processes of separation and recombination of photogenerated carriers, achieving photoluminescence and photocatalysis simultaneously is extremely challenging but essential for ever-growing complex issues and specialized scenarios. Here we proposed a biomimetic isolation-conduction strategy induced by an arene-perfluoroarene (A-P) interaction for enabling photoluminescence and photocatalytic hydrogen evolution reaction (HER) activity in the co-assembly of aromatic monomers and octafluoronapthalene (OFN). Inspired by the isolation-conduction effect of periodic isolation of myelin sheaths on the axons of vertebrate nerve fibers by node of Ranvier, we use OFN as a molecular isolator embedded in the aromatic monomers array to block the singlet-to-triplet pathway, while the enlarged intermolecular dipoles resulting from the A-P interactions facilitate the conduction of photogenerated carriers in the isolated regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!