An instability forms in gas of constant density (air) with an initial nonuniform seeding of small particles or droplets as a planar shock wave passes through the two-phase medium. The seeding nonuniformity is produced by vertical injection of a slow-moving jet of air premixed with glycol droplets or smoke particles into the test section of a shock tube, with the plane of the shock parallel to the axis of the jet. After the shock passage, two counterrotating vortices form in the plane normal to that axis. The physical mechanism of the instability we observe is peculiar to multiphase flow, where the shock acceleration causes the second (embedded) phase to move with respect to the embedding medium. With sufficient seeding concentration, this leads to entrainment of the embedding phase that acquires a relative velocity dependent on the initial seeding, resulting in vortex formation in the flow.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.106.184503DOI Listing

Publication Analysis

Top Keywords

vortex formation
8
seeding
5
shock
5
formation shock-accelerated
4
shock-accelerated gas
4
gas induced
4
induced particle
4
particle seeding
4
seeding instability
4
instability forms
4

Similar Publications

Surface Modification of 3D Biomimetic Shark Denticle Structures for Drag Reduction.

Adv Mater

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Shark skin features superhydrophilic and riblet-textured denticles that provide drag reduction, antifouling, and mechanical protection. The artificial riblet structures exhibit drag reduction capabilities in turbulent flow. However, the effects of the surface wettability of shark denticles and the cavity region underneath the denticle crown on drag reduction remain insufficiently explored.

View Article and Find Full Text PDF

Influence of Geometric Parameters on The Hemodynamic Characteristics of The Vertebral Artery.

J Biomech Eng

January 2025

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Yuquan Campus, 38 Zheda Road, Hangzhou 310027, Zhejiang, China; Shanghai Institute for Advanced Study of Zhejiang University, Zhangjiang Guochuang Center phase, No.799, Dangui Road, Shanghai 200120, China.

The carotid and vertebral arteries are principal conduits for cerebral blood supply and are common sites for atherosclerotic plaque formation. To date, there has been extensive clinical and hemodynamic reporting on carotid arteries; however, studies focusing on the hemodynamic characteristics of the vertebral artery (VA) are notably scarce. This article presents a systematic analysis of the impact of VA diameter and the angle of divergence from the subclavian artery (SA) on hemodynamic properties, facilitated by the construction of an idealized VA geometric model.

View Article and Find Full Text PDF

Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.

View Article and Find Full Text PDF

Morphing the left atrium geometry: The role of the pulmonary veins on flow patterns and thrombus formation.

Comput Biol Med

January 2025

Departamento de Ingeniería Energética, Universidad Politécnica de Madrid, Avda. de Ramiro de Maeztu 7, Madrid, 28040, Spain. Electronic address:

Background: Despite the significant advances made in the field of computational fluid dynamics (CFD) to simulate the left atrium (LA) in atrial fibrillation (AF) conditions, the connection between atrial structure, flow dynamics, and blood stagnation in the left atrial appendage (LAA) remains unclear. Deepening our understanding of this relationship would have important clinical implications, as the thrombi formed within the LAA are one of the main causes of stroke.

Aim: To highlight and better understand the fundamental role of the PV orientation in forming atrial flow patterns and systematically quantifying its effect on blood stasis within the LAA.

View Article and Find Full Text PDF

Four-dimensional flow magnetic resonance imaging (4D flow MRI) was utilized to analyze an aortic dissection with an aberrant right subclavian artery, revealing vortex formation and an increased oscillatory shear index (OSI), both indicative of variations in wall shear stress. An elevated OSI has been associated with an elevated risk of aortic dissection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!