A new family of iron(II) aryloxide [Fe(OAr)(2)(py)(x)] precursors was synthesized from the alcoholysis of iron(II) mesityl [Fe(Mes)(2)] in pyridine (py) using a series of sterically varied 2-alkyl phenols (alkyl = methyl (H-oMP), isopropyl (H-oPP), tert-butyl (H-oBP)) and 2,6-dialkyl phenols (alkyl = methyl (H-DMP), isopropyl (H-DIP), tert-butyl (H-DBP), phenyl (H-DPhP)). All of the products were found to be mononuclear and structurally characterized as [Fe(OAr)(2)(py)(x)] (x = 3 OAr = oMP (1), oPP (2), oBP (3), DMP (4), DIP (5); x = 2 OAr = DBP (6), DPhP (7)). The use of tris-tert-butoxysilanol (OSi(OBu(t))(3) = TOBS) led to isolation of [Fe(TOBS)(2)(py)(2)] (8). The new Fe(OAr)(2)(py)(x) (1-6) were found, under solvothermal conditions, to produce nanodots identified by PXRD as the γ-maghemite phase. The model precursor 3 and the nanoparticles 6n were evaluated using electrochemical methods. Cyclic voltammetry for 3 revealed multiple irreversible oxidation peaks, which have been tentatively attributed to the loss of alkoxide ligand coupled with the deposition of a solid Fe-containing coating on the electrode. This coating was stable out to the voltage limits for the acetonitrile solvent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic200423mDOI Listing

Publication Analysis

Top Keywords

series sterically
8
sterically varied
8
phenols alkyl
8
alkyl methyl
8
synthesis characterization
4
characterization electrochemical
4
electrochemical properties
4
properties series
4
varied ironii
4
ironii alkoxide
4

Similar Publications

Accurate stacking engineering of MOF nanosheets as membranes for precise H sieving.

Nat Commun

December 2024

Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

Two-dimensional (2D) metal-organic framework (MOF) nanosheet membranes hold promise for exact molecular transfer due to their structural diversity and well-defined in-plane nanochannels. However, achieving precise regulation of stacking modes between neighboring nanosheets in membrane applications and understanding its influence on separation performance remains unrevealed and challenging. Here, we propose a strategy for accurately controlling the stacking modes of MOF nanosheets via linker polarity regulation.

View Article and Find Full Text PDF

Achieving Linear α-Macro-olefins in Ethylene Polymerization through Precisely Tuned Bis(imino)pyridylcobalt Precatalysts with Steric and Electronic Parameters.

Precis Chem

December 2024

Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Synthesis of functional polyethylene from ethylene alone is tricky and heavily dependent on both the type and structure of the precatalyst and the choice of cocatalyst used in the polymerization. In the present study, a series of cobalt precatalysts was prepared and investigated for ethylene polymerization under various conditions. By incorporation of strong electron-withdrawing groups (F and NO) and a steric component (benzhydryl) into the parent bis(imino)pyridine ligand, the catalytic performance of these precatalysts was optimized.

View Article and Find Full Text PDF

Spherical nucleic acids (SNAs) usually suffer from an undesired protein corona and disrupt the function of nucleic acids (e.g., aptamer), thereby compromising recognition and response to proteins in the biological environment.

View Article and Find Full Text PDF

[Cu(NHC)(OR)] (R = C(CF)) complexes for N-H and S-H bond activation and as pre-catalysts in the Chan-Evans-Lam reaction.

Dalton Trans

December 2024

Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.

The synthesis, isolation, and full characterization of a series of NHC-copper perfluoro-alkoxide complexes are reported. Their exceptional stability resides with the steric hindrance of the nonafluoro--butyl alkoxide moiety, which exhibits a strong electron withdrawing effect. These new Cu(I) complexes are synthons that can permit the activation of acidic N-H and S-H bonds.

View Article and Find Full Text PDF

A series of four new copper and silver-thiolate, [M(-SPhCOR)] (M = Cu, Ag and R = H, Me), coordination polymers is reported. The study shows that the hydrogen bonding between the carboxylic acids directs the formation of a 2D structure associated with poor photoemission, while the steric hindrance of the ester groups allows the assembly of a 1D network coupled with bright luminescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!