Using submerged aquatic plant is a cheap and clean technique to remediate heavy metals in wastewaters. Batch experiments were conducted to assess the biosorption characteristics of Pb (II) ions by fresh tissues of Hydrilla verticallata. The biosorption of Pb(II) was examined for single, binary and ternary solutions at different initial concentrations and different pH values. The experimental results showed that the biosorption capacity increased with increasing pH from 2.0 to 6.0. The biosorption value reached 44.65 mg/g when initial lead concentration was 250 mg/L and pH = 5. Both Cu (II) and Zn(II) ions were found to have an adverse effect on the biosorption of Pb(II) for binary and ternary solutions. In Pb-Cu binary metal solution, when both initial concentrations of lead and copper ions were 250 mg/L, the biosorption capacity for lead ions was decreased to 49.29% of that in single lead ion solution. The biosorption equilibrium data for the Pb-Cu binary metal solution fitted the Langmuir competitive model well (R2 = 0.966). The theoretical q(max) value (58.02 mg/g) was in excellent consistent with that obtained experimentally, and the average relative error between calculated q(e) and experimental q(e) values was only 15.6%. Comparison between biosorption of Pb (II) and Cu (II) by H. verticallata in the binary solution could lead to the conclusion that H. verticallata has no preference of Pb(II) over Cu(II).
Download full-text PDF |
Source |
---|
Molecules
January 2025
LSMTM, Laboratoire de Synthèse Macromoléculaire et Thio-organique Macromoléculaire, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, Algiers 16111, Algeria.
Effluents containing synthetic anionic dyes can pose a risk to ecosystems, and they must be treated before their release to the environment. Biosorption, a simple and effective process, may be a promising solution for treating these effluents. In this work, chitosan beads were crosslinked with epichlorohydrin to produce a highly stable and performant biosorbent to remove Brilliant Blue FCF dye.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:
To address the challenge of antibiotic-containing wastewater, a novel micromagnetic carrier-modified integrated fixed-film activated sludge system (MC-IFAS) was developed for treating tetracycline (TC)-containing swine wastewater in this study. The magnetic effects of the MC significantly enhanced TC removal by improving TC biosorption and biodegradation in both the suspended activated sludge and the carrier-attached biofilm in the MC-IFAS. The increased electrostatic attraction and number of binding sites in both the activated sludge and the biofilm enhanced their TC biosorption capacities, particularly in the activated sludge.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria.
The number of metal-containing waste streams resulting from electronic end-of life products, metallurgical by-products, and mine tailings to name but a few, is increasing worldwide. In recent decades, the potential to exploit these waste streams as valuable secondary resources to meet the high demand of critical and economically important raw materials has become more prominent. In this review, fundamental principles of bio-based metal recovery technologies are discussed focusing on microbial metabolism-dependent and metabolism-independent mechanisms as sustainable alternatives to conventional chemical metal recovery methods.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco. Electronic address:
This research explores the biosorption of Rhodamine B (Rd-B) and Sunset Yellow (SY) dyes using cross-linked chitosan-alginate (Ch-A) biocomposite beads, combining experimental investigations with theoretical studies to elucidate the biosorption mechanisms. The biocomposite beads were synthesized through an eco-friendly cross-linking method, and their structural properties were characterized using various characterization techniques. Complementary theoretical studies using Monte Carlo (MC) simulations and molecular dynamics (MD) calculations provided insights into the molecular interactions between the dyes and the biocomposite beads.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!