Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that, affected by the river and pond water, the highest point of groundwater temperature is near the pond in spring, and near the river in winter; and regulation for water and sediment at the Xiaolangdi Reservoir also affects groundwater temperature in riparian zone, which reaches its maximum at 100 m far from the river bank. There exists a strong zone of nitrification area at 50 m from the river bank, and in this area, the groundwater pH value is lower by 0.2 to 0.4 unit than that of the other regions, with great annual varieties. The turbidity of groundwater is affected by irrigation, which is more obvious than other indicators of groundwater. The turbidity of groundwater and river water increase rapidly during the early phase of flood retreat, and slope stability of river bank is the initial impact of the soil erosion of river bank. Conductivity, chloride and sulfate data show that the range of 50-200 m in riparian wetland is a very important salt accumulation zone, and the width of salt accumulation zone changes with seasons, and this area is also a very important zone of sulfur reduction. The quality of groundwater at 200 m from the river bank is also significantly affected by floods. Physical and chemical indicators of water change strongly in this area. The result indicates that there is a very close relationship between groundwater and surface water, and it is the typical land and water ecotone between groundwater of riparian zone and the river. Rational protection for this region is critical for the conservation of water quality both in the river and groundwater.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!