Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102111 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020397 | PLOS |
Nat Commun
January 2025
Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Lipid nanoparticles (LNPs) are the preeminent non-viral drug delivery vehicle for mRNA-based therapies. Immense effort has been placed on optimizing the ionizable lipid (IL) structure, which contains an amine core conjugated to lipid tails, as small molecular adjustments can result in substantial changes in the overall efficacy of the resulting LNPs. However, despite some advancements, a major barrier for LNP delivery is endosomal escape.
View Article and Find Full Text PDFChembiochem
January 2025
Departments of Biology and Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78467, Konstanz, Germany.
The ubiquitin (Ub) ligase E6AP, encoded by the UBE3A gene, has been causally associated with human diseases including cervical cancer and Angelman syndrome, a neurodevelopmental disorder. Yet, our knowledge about disease-relevant substrates of E6AP is still limited, presumably because at least some of these interactions are rather transient, a phenomenon observed for many enzyme-substrate interactions. Here, we introduce a novel approach to trap such potential transient interactions by combining a stable E6AP-Ub conjugate mimicking the active state of this enzyme with photo-crosslinking (PCL) followed by affinity enrichment coupled to mass spectrometry (AE-MS).
View Article and Find Full Text PDFAm J Med Genet A
January 2025
Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Gait disturbance is a common motor symptom in Angelman syndrome (AS), but its characteristics have been poorly studied quantitatively. This study aimed to analyze gait characteristics in school-age children with AS using three-dimensional gait analysis (3DGA). Patients with clinically and genetically confirmed AS and healthy children aged 6-15 years were included.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Laboratório de Citogenética Clínica, Centro de Genética Médica, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil.
Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!