The intestinal microbiota is composed of hundreds of species of bacteria, fungi and protozoa and is critical for numerous biological processes, such as nutrient acquisition, vitamin production, and colonization resistance against bacterial pathogens. We studied the role of the intestinal microbiota on host resistance to Salmonella enterica serovar Typhimurium-induced colitis. Using multiple antibiotic treatments in 129S1/SvImJ mice, we showed that disruption of the intestinal microbiota alters host susceptibility to infection. Although all antibiotic treatments caused similar increases in pathogen colonization, the development of enterocolitis was seen only when streptomycin or vancomycin was used; no significant pathology was observed with the use of metronidazole. Interestingly, metronidazole-treated and infected C57BL/6 mice developed severe pathology. We hypothesized that the intestinal microbiota confers resistance to infectious colitis without affecting the ability of S. Typhimurium to colonize the intestine. Indeed, different antibiotic treatments caused distinct shifts in the intestinal microbiota prior to infection. Through fluorescence in situ hybridization, terminal restriction fragment length polymorphism, and real-time PCR, we showed that there is a strong correlation between the intestinal microbiota composition before infection and susceptibility to Salmonella-induced colitis. Members of the Bacteroidetes phylum were present at significantly higher levels in mice resistant to colitis. Further analysis revealed that Porphyromonadaceae levels were also increased in these mice. Conversely, there was a positive correlation between the abundance of Lactobacillus sp. and predisposition to colitis. Our data suggests that different members of the microbiota might be associated with S. Typhimurium colonization and colitis. Dissecting the mechanisms involved in resistance to infection and inflammation will be critical for the development of therapeutic and preventative measures against enteric pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102097 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020338 | PLOS |
J Appl Physiol (1985)
January 2025
Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.
There is growing interest in understanding the complex relationship between psychosocial stress and the human gastrointestinal microbiome (GIM). This review explores the potential physiological pathways connecting these two and how they contribute to a pro-inflammatory environment that can lead to the development and progression of the disease. Exposure to psychosocial stress triggers the activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary axis (HPA), leading to various physiological responses essential for survival and coping with the stressor.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Biomic Auth, Bioanalysis and Omics Laboratory, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, Thermi, Greece.
The gut's symbiome, a hidden metabolic organ, has gained scientific interest for its crucial role in human health. Acting as a biochemical factory, the gut microbiome produces numerous small molecules that significantly impact host metabolism. Metabolic profiling facilitates the exploration of its influence on human health and disease through the symbiotic relationship.
View Article and Find Full Text PDFFood Funct
January 2025
College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment.
View Article and Find Full Text PDFFood Funct
January 2025
Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja-UR, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, - salida 13), 26007 Logroño, Spain.
Over the last decade, research has emphasized the role of the microbiome in regulating cardiovascular physiology and disease progression. Understanding the interplay between wine polyphenols, the gut microbiota, and cardiovascular health could provide valuable insights for uncovering novel therapeutic strategies aimed at preventing and managing cardiovascular disease. In this study, two commercial red wines were subjected to dynamic gastrointestinal digestion (GIS) to monitor the flavanol-microbiota interaction by evaluating the resulting microbial metabolites.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, South Korea.
Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by severe liver inflammation and fibrosis due to an imbalanced immune response caused by enhanced bacterial components. The progression of MASH is closely linked to increased permeability of intestinal mucosal barrier facilitating enter of bacterial components into hepatic portal venous system. B cells are important immune cells for adaptive responses and enhance hepatic inflammation through cytokine production and T cell activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!