Objective: To evaluate the candidate antiretroviral microbicide compounds, dapivirine (DAP) and tenofovir (TFV), alone and in combination against the transmission of wild-type and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 from different subtypes.

Design And Methods: We determined single-drug efficacy of the RTIs, DAP and TFV, against subtype B and non-B wild-type and NNRTI-resistant HIV-1 in vitro. To assess breadth of activity, compounds were tested alone and in combination against wild-type and NNRTI-resistant subtype C primary HIV-1 isolates and complimentary clonal HIV-1 from subtypes B, C and CRF02_AG to control for viral variation. Early infection was quantified by counting light units emitted from TZM-bl cells less than 48-h postinfection. Combination ratios were based on drug inhibitory concentrations (IC(50)s) and combined effects were determined by calculating combination indices.

Results: Both candidate microbicide antiretrovirals demonstrated potent anti-NNRTI-resistant HIV-1 activity in vitro, albeit the combination protected better than the single-drug treatments. Of particular interest, the DAP with TFV combination exhibited synergy (50% combination index, CI(50) = 0.567) against subtype C NNRTI-resistant HIV-1, whereas additivity (CI(50) = 0.987) was observed against the wild-type counterpart from the same patient. The effect was not compounded by the presence of subdominant viral fractions, as experiments using complimentary clonal subtype C wild-type (CI(50) = 0.968) and NNRTI-resistant (CI(50) = 0.672) HIV-1, in lieu of the patient quasispecies, gave similar results.

Conclusion: This study supports the notion that antiretroviral drug combinations may retain antiviral activity against some drug-resistant HIV-1 despite subtype classification and quasispecies diversity.

Download full-text PDF

Source
http://dx.doi.org/10.1097/QAD.0b013e3283491f89DOI Listing

Publication Analysis

Top Keywords

nnrti-resistant hiv-1
12
hiv-1
9
drug-resistant hiv-1
8
microbicide antiretrovirals
8
combination
8
tfv combination
8
dap tfv
8
wild-type nnrti-resistant
8
complimentary clonal
8
wild-type
5

Similar Publications

Article Synopsis
  • Doravirine (DOR) is a new HIV treatment that works against some drug-resistant strains, but its effectiveness against non-B subtypes like HIV-1 subtype C is not fully understood.
  • The study used South African data to examine how certain known mutations associated with resistance affect DOR susceptibility, finding that mutations such as V106M and Y188L significantly reduce DOR effectiveness.
  • The research emphasizes the importance of genotypic drug resistance testing before starting DOR-based therapy, especially in patients with a history of efavirenz or nevirapine treatment failures.*
View Article and Find Full Text PDF

Discovery of Novel Amino Acids (Analogues)-Substituted Thiophene[3,2-]pyrimidine Derivatives as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Design, Synthesis, and Biological Evaluation.

Int J Mol Sci

August 2024

Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China.

Inspired by our previous work on the modification of diarylpyrimidine-typed non-nucleoside reverse transcriptase inhibitors (NNRTIs) and the reported crystallographic studies, a series of novel amino acids (analogues)-substituted thiophene[3,2-]pyrimidine derivatives were designed and synthesized by targeting the solvent-exposed region of the NNRTI-binding pocket. The biological evaluation results showed that compound was the most active inhibitor, exhibiting moderate-to-excellent potency against HIV-1 wild-type (WT) and a panel of NNRTI-resistant strains, with EC values ranging from 0.042 μM to 7.

View Article and Find Full Text PDF

Human Immunodeficiency Virus (HIV) is a significant threat to public health. HIV genotyping and antiretroviral resistance testing may have contributed to improved non-treated management. Immune markers might assist HIV-1 diagnosis and drug-resistant variant identification.

View Article and Find Full Text PDF

Discovery of novel diarypyrimidine derivatives bearing six-membered non-aromatic heterocycles as potent HIV-1 NNRTIs with improved anti-resistance and drug-like profiles.

Eur J Med Chem

October 2023

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China. Electronic address:

Taking our previously reported HIV-1 NNRTIs BH-11c and XJ-10c as lead compounds, series of novel diarypyrimidine derivatives bearing six-membered non-aromatic heterocycles were designed to improve anti-resistance and drug-like profiles. According to the three rounds of in vitro antiviral activity screening, compound 12g was the most active inhibitor against wild-type and five prevalent NNRTI-resistant HIV-1 strains with EC values ranging from 0.024 to 0.

View Article and Find Full Text PDF

In the current landscape of antiretroviral options, there remains an urgent need for novel non-nucleoside reverse transcriptase inhibitors (NNRTIs) with improved resistance profiles and safety properties. Herein, a series of novel tetrahydropyrido[4,3-]pyrimidine derivatives were discovered utilizing the "escape from flatland" strategy. The most potent inhibitor was endowed with broad-spectrum antiviral activity and improved resistance profiles against NNRTI-resistant variants compared to efavirenz and etravirine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!