We demonstrate targeted perturbation of neuronal activity with controlled release of neurochemicals from conducting polymer-coated microelectrodes. Polymer coating and chemical incorporation are achieved through individually addressable electrodeposition, a process that does not compromise the recording capabilities of the electrodes. Release is realized by the application of brief voltage pulses that electrochemically reduce the polymer and dissociate incorporated neurochemicals; whereby they can diffuse away and achieve locally effective concentrations. Inhibition of evoked synaptic currents in neurons within 200 µm of a 6-cyano-7-nitroquinoxaline-2,3-dione releasing electrode lasts for several seconds. Spiking activity of neurons in local circuits recorded extracellularly near the releasing electrode is silenced for a similar duration following release. This methodology is compatible with many neuromodulatory chemicals and various recording electrodes, including in vitro and implantable neural electrode arrays, thus providing an inexpensive and accessible technique capable of achieving sophisticated patterned chemical modulation of neuronal circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2560/8/4/044001DOI Listing

Publication Analysis

Top Keywords

activity controlled
8
releasing electrode
8
rapid modulation
4
modulation local
4
local neural
4
neural activity
4
controlled drug
4
release
4
drug release
4
release polymer-coated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!