The aim of this study was to investigate the effect of commonly used botanicals on UDP-glucuronosyltransferase (UGT) 1A4, UGT1A6, and UGT1A9 activities in human liver microsomes. The extracts screened were black cohosh, cranberry, echinacea, garlic, ginkgo, ginseng, milk thistle, saw palmetto, and valerian in addition to the green tea catechin epigallocatechin gallate (EGCG). Formation of trifluoperazine glucuronide, serotonin glucuronide, and mycophenolic acid phenolic glucuronide was used as an index reaction for UGT1A4, UGT1A6, and UGT1A9 activities, respectively, in human liver microsomes. Inhibition potency was expressed as the concentration of the inhibitor at 50% activity (IC(50)) and the volume in which the dose could be diluted to generate an IC(50)-equivalent concentration [volume/dose index (VDI)]. Potential inhibitors were EGCG for UGT1A4, milk thistle for both UGT1A6 and UGT1A9, saw palmetto for UGT1A6, and cranberry for UGT1A9. EGCG inhibited UGT1A4 with an IC(50) value of (mean ± S.E.) 33.8 ± 3.1 μg/ml. Milk thistle inhibited both UGT1A6 and UGT1A9 with IC(50) values of 59.5 ± 3.6 and 33.6 ± 3.1 μg/ml, respectively. Saw palmetto and cranberry weakly inhibited UGT1A6 and UGT1A9, respectively, with IC(50) values >100 μg/ml. For each inhibition, VDI was calculated to determine the potential of achieving IC(50)-equivalent concentrations in vivo. VDI values for inhibitors indicate a potential for inhibition of first-pass glucuronidation of UGT1A4, UGT1A6, and UGT1A9 substrates. These results highlight the possibility of herb-drug interactions through modulation of UGT enzyme activities. Further clinical studies are warranted to investigate the in vivo extent of the observed interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164271 | PMC |
http://dx.doi.org/10.1124/dmd.111.039602 | DOI Listing |
Yakugaku Zasshi
January 2025
Department of Personalized Medicine and Preventive Healthcare Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University.
Notable advances have recently been achieved in drug therapies for renal cell carcinoma (RCC). Several tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) have been approved for metastatic RCC (mRCC). The current first-line treatment for mRCC involves combination therapies using TKIs and ICIs.
View Article and Find Full Text PDFJ Pharm Sci
November 2024
Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
Impaired hepatic and renal function influence Alzheimer's disease (AD) progression; however, whether AD progression affects these important organ functions remains unclear. Here, we investigated the impact of AD progression, characterized by brain amyloid-beta (Aβ) accumulation, on liver and kidney function of App (APP-KI) mice using quantitative proteomics. SWATH-based quantitative proteomics revealed changes in mitochondrial, drug metabolism, and pharmacokinetic-related proteins in mouse liver and kidneys during the early (2-month-old) and intermediate (5-month-old) stages of Aβ accumulation.
View Article and Find Full Text PDFDrug Metab Dispos
September 2024
Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Research and Development, Groton, Connecticut.
UGT2B4 is a highly expressed drug-metabolizing enzyme in the liver contributing to the glucuronidation of several drugs. To enable quantitatively assessing UGT2B4 contribution toward metabolic clearance, a potent and selective UGT2B4 inhibitor that can be used for reaction phenotyping was sought. Initially, a canagliflozin-2'--glucuronyl transferase activity assay was developed in recombinant UGT2B4 and human liver microsomes (HLM) [±2% bovine serum albumin (BSA)].
View Article and Find Full Text PDFPharm Res
August 2024
Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, WA, 99202, USA.
Purpose: Predicting the quantitative fraction of glucuronidation (f) by individual UDP-glucuronosyltransferase enzymes (UGTs) is challenging due to the lack of selective inhibitors and inconsistent activity of recombinant UGT systems (rUGTs). Our study compares the relative expression versus activity factors (REF versus RAF) to predict f based on rUGT data to human liver and intestinal microsomes (HLM and HIM).
Methods: REF scalars were derived from a previous in-house proteomics study for eleven UGT enzymes (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17), whereas RAF was calculated by measuring activities in rUGTs to microsomes of selective UGT probe substrates.
Eur J Drug Metab Pharmacokinet
September 2024
Shanghai Frontiers Science Center of TCM Chemical Biology and Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, People's Republic of China.
Background And Objective: Ciclopirox is a widely used antifungal drug, redisposition of which has drawn increasing attentions due to multiple promising activities. The drug undergoes extensive glucuronidation, which acts as a major obstacle in the ongoing novel application and still remains poorly understood. The current study aims to phenotype ciclopirox glucuronidation pathway and as well to decipher the related species differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!