Within the Ca(v)1 family of voltage-gated calcium channels, Ca(v)1.2 and Ca(v)1.3 channels are the predominant subtypes in the brain. Whereas specific functions for each subtype were described in the adult brain, their role in brain development is poorly understood. Here we assess the role of Ca(v)1.3 subunits in the activity-dependent development of the auditory brainstem. We used Ca(v)1.3-deficient (Ca(v)1.3(-/-)) mice because these mice lack cochlea-driven activity that deprives the auditory centers from peripheral input. We found a drastically reduced volume in all auditory brainstem centers (range 25-59%, total 35%), which was manifest before hearing onset. A reduction was not obvious outside the auditory system. The lateral superior olive (LSO) was strikingly malformed in Ca(v)1.3(-/-) mice and had fewer neurons (1/3 less). The remaining LSO neurons displayed normal dendritic trees and received functional glutamatergic input, yet they fired action potentials predominantly with a multiple pattern upon depolarization, in contrast to the single firing pattern prevalent in controls. The latter finding appears to be due to a reduction of dendrototoxin-sensitive potassium conductances, presumably mediated through the K(v)1.2 subtype. Fura2 imaging provided evidence for functional Ca(v)1.3 channels in the LSO of wild-type mice. Our results imply that Ca(v)1.3 channels are indispensable for the development of the central auditory system. We propose that the unique LSO phenotype in Ca(v)1.3(-/-) mice, which hitherto was not described in other hereditary deafness models, is caused by the synergistic contribution of two factors: on-site loss of Ca(v)1.3 channels in the neurons plus lack of peripheral input.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622878 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5098-10.2011 | DOI Listing |
Brain
August 2022
Department of Neuroscience Physiology and Pharmacology, University College London (UCL), London WC1E 6BT, UK.
Voltage-gated calcium (CaV) channels form three subfamilies (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVβ and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4.
View Article and Find Full Text PDFWiley Interdiscip Rev Membr Transp Signal
March 2014
Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
L-type calcium channels (Cav1) represent one of the three major classes (Cav1-3) of voltage-gated calcium channels. They were identified as the target of clinically used calcium channel blockers (CCBs; so-called calcium antagonists) and were the first class accessible to biochemical characterization. Four of the 10 known 1 subunits (Cav1.
View Article and Find Full Text PDFExp Physiol
December 2012
Department of Physiology, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
There has been a spectacular rise in the global prevalence of type 2 diabetes mellitus. Cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. Contractile dysfunction, associated with disturbances in excitation-contraction coupling, has been widely demonstrated in the diabetic heart.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2008
Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL 60637, USA.
Ca2+ is the most ubiquitous second messenger found in all cells. Alterations in [Ca2+]i contribute to a wide variety of cellular responses including neurotransmitter release, muscle contraction, synaptogenesis and gene expression. Voltage-dependent Ca2+ channels, found in all excitable cells (Hille 1992), mediate the entry of Ca2+ into cells following depolarization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!