Japanese knotweeds are among the most invasive organisms in the world. Their recent expansion into salt marsh habitat provides a unique opportunity to investigate how invasives establish in new environments. We used morphology, cytology, and AFLP genotyping to identify taxa and clonal diversity in roadside and salt marsh populations. We conducted a greenhouse study to determine the ability to tolerate salt and whether salt marsh populations are more salt tolerant than roadside populations as measured by the efficiency of PSII, leaf area, succulence, height, root-to-shoot ratio, and total biomass. Clonal diversity was extremely low with one F. japonica clone and five F. ×bohemica genotypes. The two taxa were significantly different in several traits, but did not vary in biomass or plasticity of any trait. All traits were highly plastic in response to salinity, but differed significantly among genets. Despite this variation, plants from the salt marsh habitats did not perform better in the salt treatment, suggesting that they are not better adapted to tolerate salt. Instead, our data support the hypothesis that plasticity in salt tolerance traits may allow these taxa to live in saline habitats without specific adaptation to tolerate salt.

Download full-text PDF

Source
http://dx.doi.org/10.3732/ajb.2007364DOI Listing

Publication Analysis

Top Keywords

salt marsh
16
tolerate salt
12
salt
10
plasticity salt
8
salt tolerance
8
tolerance traits
8
clonal diversity
8
marsh populations
8
traits
4
traits allows
4

Similar Publications

As the primary pollinator for many crops, honey bees (Apis mellifera) are critically important to food production and the agricultural economy. Adult mosquito control is often suspected by the public and commercial beekeepers to harm honey bees, creating conflicts between industries. To investigate this matter, a two-year field study was conducted on vegetated wetlands in Salt Lake City, Utah, U.

View Article and Find Full Text PDF

Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.

View Article and Find Full Text PDF

This study employed in-situ online monitoring to assess the impact of Spartina alterniflora harvesting on greenhouse gas emissions. Their fluxes and δC values were measured in unvegetated tidal flat, low and medium vegetation coverage areas of the salt marsh wetlands along the south shore of Hangzhou Bay about a month after harvest. The objective was to clarify fluxes changes and interactions with environmental factors.

View Article and Find Full Text PDF

Large-scale restoration projects are an exciting and often untapped opportunity to use an experimental approach to inform ecosystem management and test ecological theory. In our $10M tidal marsh restoration project, we installed over 17,000 high marsh plants to increase cover and diversity, using these plantings in a large-scale experiment to test the benefits of clustering and soil amendments across a stress gradient. Clustered plantings have the potential to outperform widely spaced ones if plants alter conditions in ways that decrease stress for close neighbors.

View Article and Find Full Text PDF

Unlabelled: Blue carbon represents the organic carbon retained in marine coastal ecosystems. (an Arabic for "mudflats"), formed in tidal environments under arid conditions, have been proposed to be capable of carbon sequestrating. Despite the growing understanding of the critical role of blue carbon ecosystems, there is a current dispute about whether sabkhas around the Persian Gulf can contribute to carbon retention as a blue carbon ecosystem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!