Paecilomyces lilacinus was described more than a century ago and is a commonly occurring fungus in soil. However, in the last decade this fungus has been increasingly found as the causal agent of infections in man and other vertebrates. Most cases of disease are described from patients with compromised immune systems or intraocular lens implants. In this study, we compared clinical isolates with strains isolated from soil, insects and nematodes using 18S rRNA gene, internal transcribed spacer (ITS) and partial translation elongation factor 1-α (TEF) sequences. Our data show that P. lilacinus is not related to Paecilomyces, represented by the well-known thermophilic and often pathogenic Paecilomyces variotii. The new genus name Purpureocillium is proposed for P. lilacinus and the new combination Purpureocillium lilacinum is made here. Furthermore, the examined Purpureocillium lilacinum isolated grouped in two clades based on ITS and partial TEF sequences. The ITS and TEF sequences of the Purpureocillium lilacinum isolates used for biocontrol of nematode pests are identical to those causing infections in (immunocompromised) humans. The use of high concentrations of Purpureocillium lilacinum spores for biocontrol poses a health risk in immunocompromised humans and more research is needed to determine the pathogenicity factors of Purpureocillium lilacinum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6968.2011.02322.x | DOI Listing |
Parasit Vectors
December 2024
Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA.
Background: Malaria remains a critical disease. Leucinostatins from the fungus Purpureocillium lilacinum inhibited the transmission of Plasmodium falciparum to mosquitoes via contact.
Methods: Here, we modified the leucinostatin B (LB) C-terminus to make derivatives and examined their inhibition against malaria transmission to mosquitoes.
PLoS One
December 2024
Tarim University/Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agriculture, Alar, China.
Cytospora chrysosperma is the primary pathogen responsible for walnut rot disease, affecting a wide variety of hosts. Currently, chemical agents, particularly agricultural Fungicides, are commonly utilized for the prevention and management of walnut rot. However, this practice has led to the development of drug-resistant pathogens, complicating disease control efforts.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Biotechnology and Bioanalysis Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Spl., 060021 Bucharest, Romania.
The green synthesis of metal nanoparticles has received substantial attention due to their applications in various domains. The aim of the study was to obtain silver nanoparticles (AgNPs) by green synthesis with filamentous fungi, such as , , and . Fungal species were grown on nutrient media and aqueous mycelium extracts were used to reduce Ag to Ag (0).
View Article and Find Full Text PDFFront Microbiol
November 2024
Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China.
Chem Biodivers
November 2024
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China.
Two new sphingosine derivatives (1 and 2), two new vicinal diol analogs (3 and 4), one new diol analog (5), one new fatty acid (9), together with 19 known compounds (6-8, 10-24), were isolated from Purpureocillium lilacinum XIA-9. Their structures were determined by detailed analysis of the 1D and 2D NMR, HRESIMS, and optical rotatory data. Fusarubin 3-methyl ether (17) exhibited potent inhibition on RSL3 induced ferroptosis with the EC value of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!