Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties.

Int J Food Sci Nutr

Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey.

Published: December 2011

Caffeic acid phenethyl ester (CAPE), a plant polyphenolic concentrated in honeybee propolis, has been found to be biologically active in a variety of pathways. The aim of this study was to determine the antioxidant activity of CAPE using different methods such as total antioxidant activity by the thiocyanate method, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid radicals, 1,1-diphenyl-2-picryl-hydrazyl free radicals, N,N-dimethyl-p-phenylenediamine dihydrochloride radicals and superoxide anion radicals scavenging activities, reducing power and ferrous ions (Fe(2+)) chelating activities. CAPE showed 97.9% inhibition on lipid peroxidation of linoleic acid emulsion. On the other hand, butylated hydroxyanisole, butylated hydroxytoluene, α-tocopherol and trolox indicated an inhibition of 87.3, 97.6, 75.3 and 90.3% on peroxidation in the same system, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.3109/09637486.2011.585963DOI Listing

Publication Analysis

Top Keywords

caffeic acid
8
acid phenethyl
8
phenethyl ester
8
ester cape
8
antioxidant activity
8
cape
4
cape correlation
4
correlation structure
4
structure antioxidant
4
antioxidant properties
4

Similar Publications

Background: Caffeic acid phenethyl ester (CAPE) is the main bioactive component of poplar type propolis. We previously reported that treatment with caffeic acid phenethyl ester (CAPE) suppressed the cell proliferation, tumor growth, as well as migration and invasion of prostate cancer (PCa) cells via inhibition of signaling pathways of AKT, c-Myc, Wnt and EGFR. We also demonstrated that combined treatment of CAPE and docetaxel altered the genes involved in glycolysis and tricarboxylic acid (TCA) cycle.

View Article and Find Full Text PDF

In this study, steam explosion (SE) was applied to produce Xuehua pear soup (XPS) at different steam explosion pressure. The results showed that 0.3-0.

View Article and Find Full Text PDF

This study investigates the pharmaceutical potential both in vitro and in silico of ethanolic propolis extract from three Algerian regions namely TAH (Tahir-Jijel), ATH (Oued Athmania-Mila) and OZ (Oued Zhor-skikda). Twenty-three compounds were identified via HPLC‒DAD, with key constituents including caffeic acid, cynarin, chrysin, naringin, and hesperetin. Moreover, Antioxidant and anti-Alzheimer activities were assessed by multiple assays.

View Article and Find Full Text PDF

[Effects of different drying methods on content of main chemical compounds in Callicarpae Nudiflorae Folium].

Zhongguo Zhong Yao Za Zhi

December 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.

This study aims to identify the main chemical compounds, investigate the effects of different drying methods on the quality, and determine the appropriate drying method of Callicarpae Nudiflorae Folium. UPLC-UV-Q-TOF-MS was employed to characterize and identify 35 main compounds, including phenylethanoid glycosides, flavonoids, and iridoids in Callicarpae Nudiflorae Folium. A method for the simultaneous determination of 8 compounds with strong UV absorption and high content was established to evaluate the quality of Callicarpae Nudiflorae Folium dried by different methods.

View Article and Find Full Text PDF

Modified Atmosphere Packaging (MAP) is a conventional method used to prolong the shelf-life of fresh-cut vegetables, including lettuce. However, MAP-stored lettuce remains perishable, and its deterioration mechanism is not fully understood. Here, we utilized non-targeted LC-MS metabolomics to evaluate the effects of cutting and extended storage time on metabolite profiles of lettuce stored in MAP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!