Induced pluripotent stem (iPS) cells are a potential cell source for regenerative medicine. However, the tumorigenicity of iPS cells is a big concern for clinical application. In addition to the genetic manipulation of the reprogramming process and the greater risk of tumor formation, it is unclear whether iPS cells with normal development potential are still tumorigenic. Here, we investigated 3 mouse iPS cell lines, including one line that is able to generate full-term mice via tetraploid blastocyst complementation. We found that a small number of undifferentiated iPS cells could be steadily isolated and expanded after long-term differentiation of cells in vitro or in vivo. The residual undifferentiated iPS cells could be expanded and redifferentiated, and undifferentiated pluripotent stem cells could again be isolated after further rounds of differentiation, suggesting that residual undifferentiated iPS cells could not be eliminated by extended cell differentiation. The residual undifferentiated cells could form teratomas in vivo, indicating that they are a potential tumorigenic risk during transplantation. These findings prompt us to reconsider the strategies for solving the tumorigenic problem of iPS cells, not only focusing on improving the reprogramming process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2011.0131 | DOI Listing |
Patient-specific induced pluripotent stem cells (iPSCs)-based modeling potentially recapitulates the pathology and mechanisms more faithfully than cell line models and general animal models. Utilizing iPSC-derived cells for personalized bone formation research offers a powerful tool to better understand the role of individual differences in bone health and disease and provide more precise information for personalized bone regeneration therapies. Here we generated iPSC-derived mesenchymal progenitor cells (iMPCs), endothelial cells (iECs), and macrophages (iMØ), from different donors.
View Article and Find Full Text PDFJ Chin Med Assoc
December 2024
Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
Background: Induced pluripotent stem cell (iPSC) technology has emerged as a powerful tool for disease modeling, providing an innovative platform for investigating disease mechanisms. iPSC-derived organoids, including retinal organoids, offer patient-specific models that closely replicate in vivo cellular environments, making them ideal for studying retinal neurodegenerative diseases where retinal ganglion cells (RGCs) are impacted. N6-methyladenosine (m6A), a prevalent internal modification in eukaryotic mRNAs, plays a critical role in RNA metabolic processes such as splicing, stability, translation, and transport.
View Article and Find Full Text PDFBMC Bioinformatics
December 2024
Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
Background: Time-series scRNA-seq data have opened a door to elucidate cell differentiation, and in this context, the optimal transport theory has been attracting much attention. However, there remain critical issues in interpretability and computational cost.
Results: We present scEGOT, a comprehensive framework for single-cell trajectory inference, as a generative model with high interpretability and low computational cost.
Acta Neuropathol Commun
December 2024
Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
Mitochondrial dysfunction and α-synuclein (αSyn) aggregation are key contributors to Parkinson's Disease (PD). While genetic and environmental risk factors, including mutations in mitochondrial-associated genes, are implicated in PD, the precise mechanisms linking mitochondrial defects to αSyn pathology remain incompletely understood, hindering the development of effective therapeutic interventions. Here, we identify the loss of branched chain ketoacid dehydrogenase kinase (BCKDK) as a mitochondrial risk factor that exacerbates αSyn pathology by disrupting Complex I function.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
Alterations to the composition and function of neuronal nuclear pore complexes (NPCs) have been documented in multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Moreover, recent work has suggested that injury to the NPC can at least in part contribute to TDP-43 loss of function and mislocalization, a pathological hallmark of ALS and related neurodegenerative diseases. Collectively, these studies highlight a role for disruptions in NPC homeostasis and surveillance as a significant pathophysiologic event in neurodegeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!